Waxes used as structuring agents for food organogels: A Review





Foods, Lipid, Organogel, Structuring agent, Wax


Lipids are key ingredients in the human diet. Because of the manipulation and modification of lipids in the food industry, the amount of trans and saturated fat has been substantially increasing in industrialized products. At the same time, the number of studies demonstrating the harmful effects of these foods on human health has increased. Organogels arise as a promising alternative for replacing trans and saturated fat in processed foods. Among the main challenges of preparing an organogel is the difficulty of finding compatible and viable structuring agents in the food industry. Waxes have been studied for this purpose and are one of the most promising organogelators. This article brings a bibliographical review on the recent studies regarding the use of waxes as structuring agents for edible vegetable oils.


Download data is not yet available.


Almdal K, Dyre J, Hvidt S, Kramer O. 1993. Towards a phenomenological definition of the term 'gel'. Polym. Gels Networks 1, 5-17. https://doi.org/10.1016/0966-7822(93)90020-I

ANVISA (Agência Nacional de Vigilância Sanitária). 2003a. Resolução RDC nº.359, de dezembro de 2003. Aprova o Regulamento Técnico de Porções de Alimentos Embalados para Fins de Rotulagem Nutricional. Diário Oficial da União, 26 de dezembro de 2003, Brasil.

ANVISA (Agência Nacional de Vigilância Sanitária). 2003b. Resolução RDC nº.360, de dezembro de 2003. Aprova o Regulamento Técnico sobre Rotulagem Nutricional de Alimentos Embalados. Diário Oficial da União, 26 de dezembro de 2003, Brasil.

Banupriya S, Elango A, Karthikeyan N, Kathirvelan C. 2016. Physico Chemical Characteristics of Dietetic Ice Cream developed by with Sunflower Oil Rice Bran Wax Organogel. Indian J. Sci. Technol. 9, e32. https://doi.org/10.17485/ijst/2016/v9i32/90771

Botega DCZ, Marangoni AG, Smith AK, Goff DH. 2013. The potential application of rice bran wax organogel to replace solid fat and enhance unsaturated fat content in ice cream. J. Food Sci. 78, 1334-1339. https://doi.org/10.1111/1750-3841.12175 PMid:24024686

Chaves KF, Barrera-Arellano D, Ribeiro APB. 2018. Potential application of lipid organogels for food industry. Food Res. Int. 105, 863-872. https://doi.org/10.1016/j.foodres.2017.12.020 PMid:29433283

Doan CD, To CM, Vrieze MD, Lynen F, Danthine S, Brown A, Dewettinck K, Patel AR. 2017. Chemical profiling of the major components in natural waxes to elucidate their role in liquid oil structuring. Food Chem. 214, 717-725. https://doi.org/10.1016/j.foodchem.2016.07.123 PMid:27507530

Doan CD, Tavernier I, Sintang MDB, Danthine S, Van de Walle D, Rimaux T, Dewettinck K. 2016. Crystallization and gelation behavior of low- and high melting waxes in rice bran oil: a case-study on berry wax and sunflower wax. Food Biophys. 12, 97-108. https://doi.org/10.1007/s11483-016-9467-y

Godoi KRR, Basso RC, Buscato MHM, Cardoso LP, Kieckbusch TG, Ribeiro APB. 2107. Dispersed free phytosterols as structuring agents in lipid systems with reduced saturated fat. Grasas Aceites 68, e217. https://doi.org/10.3989/gya.0226171

Guedes PV. 2012. Caracterização reológica e ultraestrutural de géis produzidos à base de caseinomacropeptídeo. 135 f. Master thesis-Food Engenering, Paraná Federal University, Curitiba, PR. Available in: http://hdl.handle. net/1884/28720 Accessed in: 10 jan. 2018.

Hunter JE, Zhang J, Kris E, Penny M. 2009. Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: a systematic review. Am. J. Clin. Nutr. 91, 46-63. https://doi.org/10.3945/ajcn.2009.27661 PMid:19939984

Hwang HS, Singh M, Lee S. 2016. Properties of cookies made with natural wax-vegetable oil organogels. J. Food Sci. 81, 1045-1054. https://doi.org/10.1111/1750-3841.13279 PMid:27027545

Jang A, Woosung B, Hwang HS, Lee HG, Lee S. 2015. Evaluation of canola oil organogels with candelilla wax as an alternative to shortening in baked goods. Food Chem. 187, 525-529. https://doi.org/10.1016/j.foodchem.2015.04.110 PMid:25977059

Kanya TCS, Rao LJ, Sastry MCS. 2007. Characterization of wax esters, free fatty alcohols and free fatty acids of crude wax from sunflower seed oil refineries. Food Chem. 101, 1552- 1557. https://doi.org/10.1016/j.foodchem.2006.04.008

Kim JY, Lim J, Lee J, Hwang HS, Lee S. 2017. Utilization of organogels as a replacement for solid fat in aerated baked goods: physicochemical, rheological, and tomographic characterization. J. Food Sc. 82, 445-452. https://doi.org/10.1111/1750-3841.13583 PMid:28140465

Kouzounis D, Lazaridou A, Katsanidis E. 2017. Partial replacement of animal fat by organogels structured with monoglycerides and phytosterols in frankfurter sausages. Meat Sci. 130, p.38-46. https://doi.org/10.1016/j.meatsci.2017.04.004 PMid:28407498

Marangoni A, Garti N. 2011. Edible Oleogels: Structure and Health Implications. AOCS Press, Urbana.

Mert B, Demirkesen I. 2016. Reducing saturated fat with organogel/shortening blends in a baked product. Food Chem. 199, 809-816. https://doi.org/10.1016/j.foodchem.2015.12.087 PMid:26776038

Oviedo KMM. 2010. Análise comparativa das experiências de regulação de gorduras trans em alimentos processados no Brasil, Canadá, Dinamarca e Estados Unidos. 141 f. PhD Thesis-PUC-RIO, Rio de Janeiro.

Penteado AAT, Nogueira AC, Gandra KMB, Barrera-Arellano D, Steel CJ. 2018. Zero trans biscuits with soybean-based fats formulated using an artificial neural network. Grasas Aceites 69, e251. https://doi.org/10.3989/gya.1216172

Pernetti M, Malssen KFV, Flöter E, Bot A. 2007. Structuring of edible oils by alternatives to crystalline fat. Curr. Opin. Colloid Interface Sci. 12, 221-231. https://doi.org/10.1016/j.cocis.2007.07.002

Rogers MA, Wright AJ, Marangoni AG. 2009. Oil organogels: the fat of the future?. Soft matter 5, 1594-1596. https://doi.org/10.1039/b822008p

Singh A, Auzanneau F, Rogers MA. 2017. Advances in edible organogel technologies - a decade in review. Food Res. Int. 97, p. 307-317. https://doi.org/10.1016/j.foodres.2017.04.022 PMid:28578056

Sintang MDB, Danthine S, Patel AR, Rimaux T, Van De Wallee D, Dewettincka, K. 2017. Mixed surfactant systems of sucrose esters and lecithin as a synergistic approach for oil structuring. J. Colloid Interface Sci. 504, 387-396. https://doi.org/10.1016/j.jcis.2017.05.114 PMid:28586736

Tavernier I, Doan CD, Van de Walle D, Danthine S, Rimaux T, Dewettinck K. 2017. Sequential crystallization of high and low melting waxes to improve oil structuring in wax-based organogels. RSC Adv. 7, 12113-12125. https://doi.org/10.1039/C6RA27650D

Terech P, Weiss RG. 1997. Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev. 97, 3133-3159. https://doi.org/10.1021/cr9700282 PMid:11851487

Totosaus A, Gonzaléz-Gonzaléz R, Fragoso M. 2016. Influence of the type of cellulosic derivatives on the texture, and oxidative and thermal stability of soybean oil oleogel. Grasas Aceites 67, e152. https://doi.org/10.3989/gya.0440161

Tulloch, AP. 1975. Chromatographic Analysis of natural waxes. Journal of Chromatographic Science 13, 403-407. https://doi.org/10.1093/chromsci/13.9.403

USA. 2016. HHS and USDA release new dietary guidelines to encourage healthy eating patterns to prevent chronic diseases. USDA press: 202-720-4623. Available in: <https://www.fns.usda.gov/pressrelease/2016/000516>. Accessed in: 07 jan. 2018.

Wang T, Rogers MA. 2015. Biomimicry - an approach to engineering oils into solid fats. Lipid Technol. 27, 175-178. https://doi.org/10.1002/lite.201500036

Yılmaz E, O?ütcü M. 2015. Organogels as spreadable fat and butter alternatives: sensory description and consumer perception. RSC Adv. 5, 50259-50267. https://doi.org/10.1039/C5RA06689A



How to Cite

Mandu CC, Barrera-Arellano D, Santana MH, Fernandes GD. Waxes used as structuring agents for food organogels: A Review. grasasaceites [Internet]. 2020Mar.30 [cited 2022Dec.1];71(1):e344. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1811




Most read articles by the same author(s)

1 2 > >>