Vegetable oils rich in alpha linolenic acid allow a higher accretion of n-3 LCPUFA in the plasma, liver and adipose tissue of the rat


  • R. Valenzuela Nutrition and Dietetics School, Faculty of Medicine, University of Chile
  • C. Barrera Nutrition and Dietetics School, Faculty of Medicine, University of Chile
  • J. M. Ayala Nutrition and Dietetics School, Faculty of Medicine, University of Chile
  • J. Sanhueza Lipid Center, Nutrition and Food Technology Institute, University of Chile
  • A. Valenzuela Lipid Center, Nutrition and Food Technology Institute, University of Chile - Faculty of Medicine, Universidad de Los Andes



Alpha linolenic acid, Chia oil, Docosahexaenoic acid, Eicosapentaenoic acid, n-3 LCPUFA, Sacha inchi oil


ALA is the precursor of EPA and DHA and its dietary availability is limited. Vegetable oils rich in ALA (48–64%) are alternatives for increasing its consumption. The conversion of ALA into EPA and DHA and the ratio (EPA+DHA/ALA) was evaluated in different tissues from male Wistar rats fed ALA –rich oils. Four groups (n=12/group) were fed for 21 days with oils from: a) corn (CO, 3% ALA); b) soybean (SO, 6% ALA); c) sacha inchi (SIO, 48% ALA) and; d) chia (ChO, 64% ALA). SO, SIO and ChO significantly increased ALA levels (p<0.05) in the tissues. Only SIO and ChO increased tissue EPA and DHA while reducing n-6/n-3 ratio (p<0.05). SIO and ChO are suggested as good sources of ALA to increase tissue EPA and DHA.


Download data is not yet available.


Arterburn LM, Hall EB, Oken H. 2006. Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am. J. Clin. Nutr. 83, 1467S−1476S. PMid:16841856

Barceló-Coblijn G, Collison LW, Jolly CA, Murphy EJ. 2005. Dietary alpha-linolenic acid increases brain but not heart and liver docosahexaenoic acid levels. Lipids. 40, 787–98. PMid:16296397

Barceló-Coblijn G and Murphy EJ. 2009. Alpha-linolenic acid and its conversion to longer chain n-3 fatty acids: benefits for human health and a role in maintaining tissue n-3 fatty acid levels. Prog. Lipid. Res. 48, 355–74. PMid:19619583

Bligh EG and Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917. PMid:13671378

Burlingame B, Nishida C, Uauy R, Weisell R. 2009. Fats and fatty acids in human nutrition: introduction. Ann. Nut. Met. 55, 5–7. PMid:19752533

Cortés E, Rizo-Baeza MM, Aguilar MJ, Gil V. 2013. High ratio of omega6/omega3 ratio children with neuropaties; cause or effects. Nutr Hosp. 28, 1165–70. PMid:23889637

De Caterina R. 2011. n-3 fatty acids in cardiovascular disease. N. Engl. J. Med. 364, 2439–50. PMid:21696310

Espada CE, Berra MA, Martinez MJ, Eynard AR, Pasqualini ME. 2007. Effect of Chia oil (Salvia Hispanica) rich in omega-3 fatty acids on the eicosanoid release, apoptosis and T-lymphocyte tumor infiltration in a murine mammary gland adenocarcinoma. Prostaglandins Leukotr. Ess. Fatty Acids. 77, 21–8. PMid:17618100

González-Ma-án D, Tapia G, Gormaz JG, D'Espessailles A, Espinosa A, Masson L, Varela P, Valenzuela A, Valenzuela R. 2012. Bioconversion of α-linolenic acid to n-3 LCPUFA and expression of PPAR-alpha, acyl Coenzyme A oxidase 1 and carnitine acyl transferase I are incremented after feeding rats with α-linolenic acidrich oils. Food Funct. 3, 765–72. PMid:22588205

Holman R and Johnson S. 1982. A case of human linolenic acid deficiency involving neurological abnormalities. Am. J. Clin. Nutr. 35, 617–23. PMid:6801965

Hoffman D, Boettcher J, Diersen-Schade D. 2009. Toward optimizing vision and cognition in term infants by dietary docosahexaenoic and arachidonic acid supplementation: A review of randomized controlled trials. Prostaglandins Leukotr. Ess. Fatty Acids. 81, 151–58. PMid:19505812

Hunter JE, in Biological effects and nutritional essentiality, ed. C. Galli and A. P. Simopoulos, Series A: Life Sciences, Plenum Press: New York, 1989, vol. 171, pp. 43–55.

Innis SM and Dyer RA. 2002. Brain astrocyte synthesis of docosahexaenoic acid from n-3 fatty acids is limited at the elongation of docosapentaenoic acid. J. Lipid. Res. 43, 1529–36. PMid:12235185

Maurer NE, Hatta-Sakoda B, Pascual-Chagman G, Rodriguez-Saona LE. 2012. Characterization and authentication of a novel vegetable source of omega-3 fatty acids, sacha inchi (Plukenetia volubilis L.) oil. Food Chem. 134, 1173–80. PMid:23107745

Morrison WR and Smith LM. 1964. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J. Lipid. Res. 5, 600–8. PMid:14221106

Mozaffarian D, Wu JH. 2011. Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J. Am. Coll. Cardiol. 58, 2047–67. PMid:22051327

Nakamura MT and Nara TY. 2004. Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu. Rev. Nutr. 24, 345–76. PMid:15189125

Simopoulos AP. 1999. New products from the agri-food industry: The return of n-3 fatty acids into the food supply. Lipids. 34, S297–S301. PMid:10419184

Simopoulos AP. 2008. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 233, 674–88. PMid:18408140

Simopoulos AP. 2009. Evolutionary aspects of the dietary omega- 6: omega-3 fatty acid ratio: medical implications. World Rev. Nutr. Diet 100, 1–21. PMid:19696523

Sun Q, Ma J, Campos H, Rexrode KM, Albert CM, Mozaffarian D, Hu FB. 2008. Blood concentrations of individual longchain n-3 fatty acids and risk of nonfatal myocardial infarction. Am. J. Clin. Nutr. 88, 216–23. PMid:18614744

Swanson D, Block R, Mousa S. 2012. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv. Nutr. 3, 1–7. PMid:22332096 PMCid:PMC3262608

Valenzuela R and Videla LA. 2011. The importance of the long-chain polyunsaturated fatty acid n-6/n-3 ratio indevelopment of non-alcoholic fatty liver associated with obesity. Food Funct. 2, 644–8. PMid:22008843

Valenzuela A, Sanhueza J, Nieto S. 2006. Docosahexaenoic acid (DHA), essentiality and requirements: why and how to provide supplementation. Grasas Aceites 57, 229–37.

Valenzuela R, Sanhueza, Valenzuela A. 2012a. Docosahexaenoic acid (DHA), an important fatty acid in aging and the protection of neurodegenerative diseases. J. Nut. Ther. 1, 63–72.

Valenzuela A, Sanhueza J, de la Barra F. 2012b. Fish oil. Yesterday an industrial waste, actually a product of high nutritional value. Rev. Chil. Nutr. 39, 201–209.

Van Vliet T and Katan MB. 1990. Lower ratio of n-3 to n-6 fatty acids in cultured than in wild fish. Am. J. Clin. Nutr. 51, 1–2. PMid:2296923

Wang Y, Botolin D, Christian B, Busik J, Xu J, Jump DB. 2005. Tissue-specific, nutritional, and developmental regulation of rat fatty acid elongases. J. Lipid Res. 46, 706−15. PMid:15654130 PMCid:PMC2430181

Wang Y, Botolin D, Xu J, Christian B, Mitchell E, Jayaprakasam B, Nair MG, Peters JM, Busik JV, Olson LK, Jump DB. 2006. Regulation of hepatic fatty acid elongase and desaturase expression in diabetes and obesity. J. Lipid Res. 47, 2028–41. PMid:16790840 PMCid:PMC2764365



How to Cite

Valenzuela R, Barrera C, Ayala JM, Sanhueza J, Valenzuela A. Vegetable oils rich in alpha linolenic acid allow a higher accretion of n-3 LCPUFA in the plasma, liver and adipose tissue of the rat. grasasaceites [Internet]. 2014Jun.30 [cited 2023Sep.23];65(2):e026. Available from:




Most read articles by the same author(s)