Una explicación para el desamargado natural de aceitunas Hurma durante su maduración en el árbol
DOI:
https://doi.org/10.3989/gya.1161162Palabras clave:
Aceituna, Amargor, Antocianina, Azúcar, Compuestos fenólicosResumen
Las aceitunas recién cogidas del árbol necesitan ser procesadas para hacerlas comestibles, debido a su contenido en el compuesto amargo oleuropeína. Sin embargo, algunas aceitunas de la variedad Erkence desamargan de forma natural en el árbol dando lugar a las aceitunas conocidas como Hurma. En este trabajo se han analizado las características químicas de aceitunas Erkence y Hurma recolectadas de la zona noreste y suroeste de árboles situados en la provincia de Karaburun. Se ha confirmado que el contenido en oleuropeína de aceitunas Hurma es muy inferior (< 2000 mg/kg) que Erkence, las cuales alcanzaron una concentración en dicha sustancia hasta de 35.000 mg/kg al principio del periodo de maduración. Además, no se encontraron en aceitunas Hurma antocianinas ni libres ni polimerizadas, a diferencia de Erkence. Estos resultados indican que la oxidación enzimática de la oleuropeína podría ser la responsable de la eliminación del amargor de forma natural en aceitunas Hurma durante su maduración en el árbol.
Descargas
Citas
Aktas A B, Ozen B, Tokatli F, Sen I. 2014a. Phenolics profile of a naturally debittering olive in comparison to regular olive varieties. J. Sci. Food Agric. 94, 691–698. https://doi.org/10.1002/jsfa.6308 PMid:23868414
Aktas A B, Ozen B, Tokatli F, Sen I. 2014b. Comparison of some chemical parameters of a naturally debittered olive (Olea europaea L.) type with regular olive varieties. Food Chem. 161, 104–111. https://doi.org/10.1016/j.foodchem.2014.03.116 PMid:24837927
Arslan D. 2012. Physico-chemical characteristics of olive fruits of Turkish varieties from the province of Hatay. Grasas Aceites 63, 158–166. https://doi.org/10.3989/gya.071611
Bugbee WM. 1975. Peroxidase, polyphenoloxidase, and endogalacturonate transeliminase activity in different tissues of sugar-beet infected with Phoma betae. Can. J. Bot. 53, 1347–1351. https://doi.org/10.1139/b75-163
Di Vaio C, Nocerino S, Paduano A, Sacchi R. 2013. Influence of some environmental factor son drupe maturation and olive oil composition. J. Sci. Food Agric. 93, 1134–1139. https://doi.org/10.1002/jsfa.5863 PMid:22936522
Fuchs Y, Zauberman G, Yanko U. 1975. Freeze injuries in avocado fruit. Hortscience 10, 64–65.
García P, Brenes M, Romero C, Garrido A. 1995. Respiration and physicochemical changes in harvested olive fruits. J. Horticult. Sci. 70, 925–933. https://doi.org/10.1080/14620316.1995.11515368
García A, Romero C, Medina E, García P, de Castro A, Brenes M. 2008. Debittering of olives by polyphenol oxidation. J. Agric. Food Chem. 56, 11862–11867. https://doi.org/10.1021/jf802967y PMid:19049294
Gómez-del-Campo M, García J M. 2012. Canopy fruit location can affect olive oil quality in "Arbequina" hedgerow orchards. J. Am. Oil Chem. Soc. 89, 123–133. https://doi.org/10.1007/s11746-011-1900-2
Guerrero-Chavez G, Scampicchio M, Andreotti C. 2015. Influence of the site altitude on strawberry phenolic composition and quality. Sci. Hortic. 192, 21–28. https://doi.org/10.1016/j.scienta.2015.05.017
Hura K, Hura T, Baczek-Kwinta R, Grzesiak M, Plazek A. 2014. Induction of defense mechanisms in seedlings of oilseed winter rape inoculated with Phoma lingam (Leptospsphaeria maculans). Phytoparasitica 42, 145–154. https://doi.org/10.1007/s12600-013-0344-7
Liu A, Chen W, Li X. 2005. Changes in the postharvest physiology and lychee fruits latently infected by anthracnose fungus and the biological characteristics of the pathogenic fungus in the disease. Acta Horticult. 665, 365–371. https://doi.org/10.17660/ActaHortic.2005.665.45
Marsilio V, Campestre C, Lanza B, De Angelis M.2001. Sugar and polyol compositions of some European olive fruit varieties (Olea europaea L.) suitable for table olive purposes. Food Chem. 72, 485–490. https://doi.org/10.1016/S0308-8146(00)00268-5
Medina E, Brenes M, Romero C, García A, Castro A. 2007. Main Antimicrobial Compounds in Table Olives. J. Agric. Food Chem. 55, 9817–9823. https://doi.org/10.1021/jf0719757 PMid:17970590
Menz G, Vriesekoop F. 2010. Physical and chemical changes during the maturation of Gordal Sevillana olives (Olea europaea L., cv. Gordal Sevillana). J. Agric. Food Chem. 58, 4934–4938. https://doi.org/10.1021/jf904311r PMid:20355715
Moral J, Xavier C, Roca LF, Romero J, Moreda W, Trapero A. 2014. Olive anthracnose and its effect on olive oil quality. Grasas Aceites 65, 1–16.
Morales LO, Tegelberg R, Brosché M, Keinänen M, Lindfors A, Aphalo PJ. 2010. Effects of solar UV-A and UV-B radiation on gene expression and phenolic accumulation in Betula pendula leaves. Tree Physiol. 30, 923–934. https://doi.org/10.1093/treephys/tpq051 PMid:20519675
Morello JR, Motilva MJ, Ramos T, Romero MP. 2003. Effect of freeze injuries in olive fruit on virgin olive oil composition. Food Chem. 81, 547–553. https://doi.org/10.1016/S0308-8146(02)00488-0
Morello J R, Vuorela S, Romero M P, Motilva M J, Heinonen M. 2005. Antioxidant activity of olive pulp and olive oil phenolic compounds of the Arbequina cultivar. J. Agric. Food Chem. 53, 2002–2008. https://doi.org/10.1021/jf048386a PMid:15769127
Mousa Y, Gerasopoulos D. 1996. Effect of altitude on fruit and oil quality characteristics of "Mastoids" olives. J. Sci. Food Agric. 71, 345–350. https://doi.org/10.1002/(SICI)1097-0010(199607)71:3<345::AID-JSFA590>3.0.CO;2-T
Panagou E Z. 2006. Greek dry-salted olives: Monitoring the dry-salting process and subsequent physico-chemical and microbiological profile during storage under different packing conditions at 4 and 20ºC. LWT-Food Sci. Technol. 39, 323–330. https://doi.org/10.1016/j.lwt.2005.02.017
Piscopo A, De Bruno A, Zappia A, Poiana M. 2014. Antioxidant activity of dried Green olives (Carolea cv.). LWT-Food Sci. Technol. 58, 49–54.
Ramírez E, García-García P, de Castro A, Romero C, Brenes M. 2013. Debittering of black dry-salted olives. Eur. J. Lipid Sci. Technol. 115, 1319–1324. https://doi.org/10.1002/ejlt.201300167
Ramírez E, Medina E, Brenes M, Romero C. 2014. Endogenous enzymes involved in the transformation of oleuropein in Spanish table olive varieties. J. Agric. Food Chem. 62, 9569–9575. https://doi.org/10.1021/jf5027982 PMid:25209163
Ramírez E, Gandul-Rojas B, Romero C, Brenes M, Gallardo- Guerrero L. 2015. Composition of pigments and colour changes in green table olives related to processing type. Food Chem. 166, 115–124. https://doi.org/10.1016/j.foodchem.2014.05.154 PMid:25053036
Rigane G, Salem R, Sayadi S, Bouaziz M. 2011. Phenolic composition, isolation, and structure of a new deoxyloganic acid derivative from Dhokar and Gemri-Dhokar olive cultivars. J. Food Sci. 76, C965–C973. https://doi.org/10.1111/j.1750-3841.2011.02290.x PMid:21806611
Romero C, Bakker J. 2000. Anthocyanin and colour evolution during maturation of four port wines: effect of pyruvic acid addition. J. Sci. Food Agric. 81, 252–260. https://doi.org/10.1002/1097-0010(20010115)81:2<252::AID-JSFA810>3.0.CO;2-5
Romero C, García P, Brenes M, García A, Garrido A. 2002. Phenolic compounds in natural black Spanish olive varieties. Eur. Food Res. Technol. 215, 489–496. https://doi.org/10.1007/s00217-002-0619-6
Romero C, Brenes M, García P, García A, Garrido A. 2004. Polyphenol changes during fermentation of naturally black olives. J. Agric. Food Chem. 52, 1973–1979. https://doi.org/10.1021/jf030726p PMid:15053538
Romero C, Ruiz-Méndez M V, Brenes M. 2016. Bioactive compounds in virgin olive oils of the PDO Montoro-Adamuz. J. Am. Oil Chem. Soc. 93, 665–672. https://doi.org/10.1007/s11746-016-2803-z
Sozbilen G S, Baysal A H. 2016. Microbial profile and bacterial characterization of naturally debittered Hurma olives compared to non-debittered Erkence variety during ripening period. Int. J. Food Sci. Technol. 51, 2099–2105. https://doi.org/10.1111/ijfs.13187
Spayd S E, Tarara J M, Mee D L, Ferguson J C. 2002. Separation of sunlight and temperature effects on the composition of Vitis vinífera cv. Merlot berries. Am. J. Enol. Viticult. 53, 171–182.
Susamci E. 2011. Effect of different storage and temperature conditions postharvest durability of Karaburun Hurma Table Olives. Olive Research Institute. Publication nº 215. (TAGEM/GY/10/03/01/170). Izmir, Turkey.
Talhaoui N, Gómez-Caravaca A M, León L, De la Rosa R, Fernández-Gutiérrez A, Segura-Carretero A. 2015. Pattern of variation of fruit traits and phenol content in olive fruits from six different cultivars. J. Agric. Food Chem. 63, 10466–10476. https://doi.org/10.1021/acs.jafc.5b04315 PMid:26509962
Zoratti L, Jaakola L, Haggman H, Giongo L. 2015. Anthocyanin profile in berries of wild and cultivated Vaccinium spp. along altitudinal gradients in the Alps. J. Agric. Food Chem. 63, 8641–8650. https://doi.org/10.1021/acs.jafc.5b02833 PMid:26373665
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.