Cambios en el perfil de ácidos grasos del músculo de Holothuria forskali tras una exposición aguda a mercurio

Autores/as

DOI:

https://doi.org/10.3989/gya.0335201

Palabras clave:

Cloruro de mercurio (HgCl2), Composición de ácidos grasos, Exposición aguda, Holothuria forskali, Índices de peroxidación lipídica, Pepino de mar

Resumen


El presente estudio tuvo como objetivo demostrar la interacción entre el mercurio (Hg), como modelo de estresor químico para el organismo acuático, y el perfil de ácidos grasos (FA) en el músculo longitudinal del pepino de mar Holothuria forskali. Para evaluar la sensibilidad de esta especie a los efectos tóxicos del Hg, los juveniles de H. forskali fueron expuestos a dosis graduales de Hg (40, 80 y 160 µg·L-1) durante 96 h. Los resultados mostraron que después de la exposición al Hg, el perfil de FA de H. forskali respondió con una tendencia direccional anclada por el aumento en el nivel de ácidos grasos saturados y la disminución en el nivel de ácidos grasos monoinsaturados y poliinsaturados. Los cambios más prominentes en la composición de AG se registraron a la dosis más baja con una disminución notable en los niveles de ácido linoleico, araquidónico y eicosapentaenoico frente a un aumento de ácido docosahexaenoico. La aparición de un estado de estrés oxidativo inducido por la contaminación con Hg se puso de manifiesto por el aumento en los niveles de malondialdehído, peróxido de hidrógeno e hidroperóxido de lípidos. En general, la concentración más baja de mercurio ejerció efectos más obvios sobre el metabolismo de los lípidos, lo que sugiere que los cambios en la composición de los ácidos grasos pueden actuar como un biomarcador anterior para evaluar la toxicidad del mercurio en esta especie de importancia ecológica y económica.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Balshaw S, Edwards JW, Ross KE, Daughtry BJ. 2008. Mercury distribution in the muscular tissue of farmed southern bluefin tuna (Thunnus maccoyii) is inversely related to the lipid content of tissues. Food Chem. 111, 616- 621. https://doi.org/10.1016/j.foodchem.2008.04.041

Bhamre PR, Thorat SP, Desai AE. 2010. Evaluation of acute toxicity of mercury, cadmium and zinc to a freshwater mussel Lamellidens consobrinus. Our Nat. 8, 180-184. https://doi.org/10.3126/on.v8i1.4326

Bordbar S, Anwar F, Saari N. 2011. High-value components and bioactives from sea cucumbers for functional foods-A Review. Mar. Drugs 9 (10), 1761-1805. https://doi.org/10.3390/md9101761 PMid:22072996 PMCid:PMC3210605

Calder PC. 2015. Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochim. Biophys. Acta Mol. Cell Biol Lipids 1851, 469-484. https://doi.org/10.1016/j.bbalip.2014.08.010 PMid:25149823

Cecchi G, Basini S, Castano C. 1985. Méthanolyse rapide des huiles en solvant. Rev. Franc. Corps Gras 4, 63-164.

Da Costa F, Robert R, Quéré C, Wikfors GH, Soudant P. 2015. Essential fatty acid assimilation and synthesis in larvae of the bivalve Crassostrea gigas. Lipids 50 (5), 503-511. https://doi.org/10.1007/s11745-015-4006-z PMid:25771891

Dailianis S. 2011. Environnemental impact of anthropogenic activities: the use of mussels as a reliable tool for monitoring marine pollution. In: McGevin, L.E. (Ed.), Mussels: Anatomy. Habitat and Environmental Impact. Nova Science Publishers. Inc. pp. 1-30.

Dindia LA, Faught EL, Leonenko Z, Thomas RH, Vijayan MM. 2013. Rapid cortisol signaling in response to acute stress involves changes in plasma membrane order in rainbow trout liver. Am. J. Physiol. Endoc. M. 304, E1157-E1166 https://doi.org/10.1152/ajpendo.00500.2012 PMid:23531621

Delaporte M, Soudant P, Moal J, Kraffe E, Marty Y, Samain J.F .2005. Incorporation and modification of dietary fatty acids in gill polar lipids by two bivalve species Crassostrea gigas and Ruditapes philippinarum. Comp. Biochem. Phys. A 140, 460-470. https://doi.org/10.1016/j.cbpb.2005.02.009 PMid:15936706

Folch J, Lees M, Sloane-Stanley GA. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226 (1) 497-509. https://doi.org/10.1016/S0021-9258(18)64849-5

Flores JS, Torres-Jasso JH, Rojas-Bravo D, Reyna-Villela ZM, Erandis D, Torres-Sánchez ED. 2019. Effects of Mercury, Lead, Arsenic and Zinc to Human Renal Oxidative Stress and Functions: A Review. J. Heavy Met. Toxicity Dis. 4, 1-2.

Filimonova V, Gonçalves F, Marques JC, De Troch M, Gonçalves ANN. 2016. Fatty acid profiling as bioindicator of chemical stress in marine organisms: A review. Ecol. Indic. 67, 657-672. https://doi.org/10.1016/j.ecolind.2016.03.044

Ferain A, Bonnineau C, Neefs I, Das K, Larondelle Y, Rees JF, Debier C, Lemaire B. 2018. Transcriptional effects of phospholipid fatty acid profile on rainbow trout liver cells exposed to methylmercury. Aquat. Toxicol. 199, 174-187. https://doi.org/10.1016/j.aquatox.2018.03.025 PMid:29649756

Funari SS, Barceló F, Escribá PV. 2003. Effects of oleic acid and its congeners, elaidic and stearic acids, on the structural properties of phosphatidylethanolamine membranes. J. Lipid R. 44, 567-575. https://doi.org/10.1194/jlr.M200356-JLR200 PMid:12562874

Gonçalves A, Mesquita A, Verdelhos T, Coutinho J, Marques J, Gonçalves F. 2016. Fatty acids profiles as indicator of stress induced by of a common herbicide on two marine bivalves species: Cerastoderma edule (Linnaeus, 1758) and Scrobicularia plana (da Costa, 1778). Ecol. Indic. 63, 209-218. https://doi.org/10.1016/j.ecolind.2015.12.006

Holman TR. 1954. Autoxidation of fats and related substances. In Progress in the Chemistry of Fats and Other Lipids. Academic Press, New York. 2, 491-514. https://doi.org/10.1016/0079-6832(54)90004-X

Jiang ZY, Hunt JV, Wolf SP. 1992. Detection of lipid hydroperoxides using Fox method. Anal. Biochem. 202, 384-389. https://doi.org/10.1016/0003-2697(92)90122-N

Kotronen A, Seppanen-Laakso T, Westerbacka J, Arola J, Ruskeepaa AL, Yki-Jarvinen H, Oresic M. 2011. Comparison of lipid and fatty acid composition of the liver, subcutaneous and intra-abdominal adipose tissue, and serum. Obesity 18, 937-944. https://doi.org/10.1038/oby.2009.326 PMid:19798063

Lushchak VI. 2011. Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicol. 719 (101), 13-30. https://doi.org/10.1016/j.aquatox.2010.10.006 PMid:21074869

Liu X, Wang L, Feng Z, Song X, Zhu X. 2017b. Molecular cloning and functional characterization of the fatty acid delta 6 desaturase (FAD6) gene in the sea cucumber Apostichopus japonicus. Aquac. Res. 48, 4991-5003. https://doi.org/10.1111/are.13317

Los DA, Murata N. 2004. Membrane fluidity and its roles in the perception of environmental signals. Biochim. Biophys. Acta 1666, 142-157. https://doi.org/10.1016/j.bbamem.2004.08.002 PMid:15519313

Munro D, Banh S, Sotiri, Tamanna N, Treberg J. 2016. The thioredoxin and glutathione‐dependent H2O2 consumption pathways in muscle mitochondria: Involvement in H2O2 metabolism and consequence to H2O2 efflux assays. Free Radic. Biol. Med. 96, 334-346. https://doi.org/10.1016/j.freeradbiomed.2016.04.014 PMid:27101737

Ma XZ, Pang ZD, Wang JH, Song Z, Zhao LM, Du XJ, Deng XL. 2018. The role and mechanism of KCa3.1 channels in human monocyte migration induced by palmitic acid. Exp. Cell Res. 369, 208-217. https://doi.org/10.1016/j.yexcr.2018.05.020 PMid:29792849

Mayurasakorn K, Niatsetskaya ZV, Sosunov SA, Williams JJ, Zirpoli H, Vlasakov I, Ten VS. 2016. DHA but not EPA emulsions preserve neurological and mitochondrial function after brain hypoxia-ischemia in neonatal mice. PLOS One 11. https://doi.org/10.1371/journal.pone.0160870 PMid:27513579 PMCid:PMC4981459

Navarro PG, García-Sanz S, Tuya F. 2014. Contrasting displacement of the sea cucumber Holothuria arguinensis between adjacent nearshore habitats. J. Exp. Mar. Biol. Ecol. 453, 123-130. https://doi.org/10.1016/j.jembe.2014.01.008

Neves M, Castro BB, Vidal T, Vieira R, Marques JC, Coutinho JAP, Gonçalves F. 2015. Biochemical and populational responses of an aquatic bioindicator species, Daphnia longispina, to a commercial formulation of an herbicide (primextraç gold TZ) and its active ingredient (S-metolachlor). Ecol. Indic. 53, 220-230. https://doi.org/10.1016/j.ecolind.2015.01.031

Oliveira P, Lopes-Lima M, Machado J, Guilhermino L. 2015. Comparative sensitivity of European native (Anodonta anatina) and exotic (Corbicula fluminea) bivalves to mercury. Estuar. Coast. Shelf Sci. 167, 191-198. https://doi.org/10.1016/j.ecss.2015.06.014

Ou P, Wolff SP. 1996. A discontinuous method for catalase determination at near physiological concentrations of H2O2 and its application to the study of H2O2 fluxes within cells. J. Biochem. Biophys. Meth. 31 (1-2), 59-67. https://doi.org/10.1016/0165-022X(95)00039-T

Patrick L. 2002. Mercury toxicity mercury toxicity and antioxidants: Part 1: role of glutathione and alpha-lipoic acid in the treatment of mercury toxicity. Altern. Med. Rev. 7 (6), 456-471.

Rabeh, Telahigue K, Bejaoui S, Hajji T, Nechi S, Chelbi E, EL Cafsi M, Soudani N. 2019. Effects of mercury graded doses on redox status, metallothione in levels and genotoxicity in the intestine of sea cucumber Holothuria forskali. Chem. Ecol. 35 (3), 204-218. https://doi.org/10.1080/02757540.2018.1546292

Rabei A, Hichami A, Beldi H, Bellenger S, Khan NA, Soltani N. 2018. Fatty acid composition, enzyme activities and metallothioneins in Donax trunculus (Mollusca, Bivalvia) from polluted and reference sites in the Gulf of Annaba (Algeria): pattern of recovery during transplantation. Environ. Pollut. 237, 900-907. https://doi.org/10.1016/j.envpol.2018.01.041 PMid:29455915

Ruiz-Gutierrez V, Muriana FJ, Guerrero A, Cert AM, Villar J. 1996. Plasma lipids, erythrocyte membrane lipids and blood pressure of hypertensive women after ingestion of dietary oleic acid from two different sources. J. Hypertens 14, 1483- 1490. https://doi.org/10.1097/00004872-199612000-00016 PMid:8986934

Ruiz F, González-Regalado ML, Muñoz JM, Abad M, Toscano A, Prudencio MI, Dias MI. 2014. Distribution of heavy metals and pollution pathways in a shallow marine shelf: assessment for a future management. J. Environ. Sci. Technol. 11, 1249. https://doi.org/10.1007/s13762-014-0576-1

Silva CO, Simões T, Novais SC, Pimparel I, Granada L, Soares AM, Barata C, Lemos MF. 2017. Fatty acid profile of the sea snail Gibbula umbilicalis as a biomarker for coastal metal pollution. Sci. Total Environ. 15 (586), 542-550. https://doi.org/10.1016/j.scitotenv.2017.02.015 PMid:28202240

Signa G, Di Leonardo R, Vaccaro A, Tramati CD, Mazzola A, Vizzini S. 2015. Lipid and fatty acid biomarkers as proxies for environmental contamination in caged mussels Mytilus galloprovincialis. Ecol. Indic. 57, 384-394. https://doi.org/10.1016/j.ecolind.2015.05.002

Sicuro B, Levine J. 2011. Sea cucumber in the Mediterranean: a potential species for aquaculture in the Mediterranean. Rev. Fish. Sci. 19, 299-304. https://doi.org/10.1080/10641262.2011.598249

Tayemeh MB, Esmailbeigi M, Shirdel I, Joo HS, Johari SA, Banan A, Nourani H, Mashhadi H, Jami MJ, Tabarrok M. 2020. Perturbation of fatty acid composition, pigments, and growth indices of Chlorella vulgaris in response to silver ions and nanoparticles: A new holistic understanding of hidden ecotoxicological aspect of pollutants. Chemosphere 238, 124576 https://doi.org/10.1016/j.chemosphere.2019.124576 PMid:31421462

Thyrring J, Juhl BK, Holmstrup M, Blicher ME, Sejr M. 2015. Does acute lead (Pb) contamination influence membrane fatty acid composition and freeze tolerance in intertidal blue mussels in arctic Greenland? Ecotel. 24, 2036-2042. https://doi.org/10.1007/s10646-015-1539-0 PMid:26438355

Turk Culha S, Dereli H, Karaduman FR, Culha M. 2016. Assessment of trace metal contamination in the sea cucumber (Holothuria tubulosa) and sediments from the Dardanelles Strait (Turkey). Environ. Sci. Pollut. R. 23 (12), 11584-11597. https://doi.org/10.1007/s11356-016-6152-0 PMid:26931662

Telahigue K, Rabeh I, Bejaoui S, Hajji T, Nechi S, Chelbi E, El Cafsi M, Soudani N. 2018. Mercury disrupts redox status, up-regulates metallothionein and induces genotoxicity in respiratory tree of sea cucumber (Holothuria forskali). Drug. Chem. Toxicol. 43 (3), 287-297. https://doi.org/10.1080/01480545.2018.1524475 PMid:30554537

Telahigue K, Rabeh I, Hajji T, Trabelsi W, Bejaoui S, Chouba L, El Cafsi M, Soudani N. 2019. Effects of acute mercury exposure on fatty acid composition and oxidative stress biomarkers in Holothuria forskali body wall. Ecotox. Environ. Safe. 169, 516-522. https://doi.org/10.1016/j.ecoenv.2018.11.051 PMid:30472476

Uttara B, Singh AV, Zamboni P, Mahajan RT. 2009. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 7, 65-74. https://doi.org/10.2174/157015909787602823 PMid:19721819 PMCid:PMC2724665

Verlecar XN, Jena KB, Chainy GBN. 2008. Modulation of antioxidant defences in digestive gland of Pernaviridis (L.), on mercury exposures. Chemosphere 71, 1977-1985. https://doi.org/10.1016/j.chemosphere.2007.12.014 PMid:18329067

Vigh L, Nakamoto H, Landry J, Gomez-Muñoz A, Harwood DJL, Horvath I. 2007. Membrane regulation of the stress response from prokaryotic models to mammalian cells. Ann. N. Y. Acad. Sci. 1113, 40-51. https://doi.org/10.1196/annals.1391.027 PMid:17656573

Wang P, Wang R, Wang C, Qian J, Hou J. 2016. Exposure-dose-response relationships of the freshwater bivalve Corbicula fluminea to inorganic mercury in sediments. J. Comput. Theor. Nanosci. 13, 5714-5723. https://doi.org/10.1166/jctn.2016.5476

Publicado

2021-09-21

Cómo citar

1.
Rabeh I, Telahigue K, Hajji T, Fouzai C, El Cafsi M, Soudani N. Cambios en el perfil de ácidos grasos del músculo de Holothuria forskali tras una exposición aguda a mercurio. Grasas aceites [Internet]. 21 de septiembre de 2021 [citado 1 de mayo de 2025];72(3):e425. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1896

Número

Sección

Investigación

Artículos más leídos del mismo autor/a