Grasas y Aceites, Vol 70, No 4 (2019)

Change in fatty acid composition and evaluation of lipids and protein oxidation in the commercial cooked clams (Ruditapes decussatus)


https://doi.org/10.3989/gya.1045182

S. Bejaoui
University of Tunis El Manar, Faculty of Sciences of Tunis, Biology Department, Ecology, Biology and Physiology of aquatic organisms’ laboratory, Tunisia
orcid http://orcid.org/0000-0002-7946-2763

I. Rabeh
University of Tunis El Manar, Faculty of Sciences of Tunis, Biology Department, Ecology, Biology and Physiology of aquatic organisms’ laboratory, Tunisia
orcid http://orcid.org/0000-0002-0307-473X

F. Ghribi
University of Tunis El Manar, Faculty of Sciences of Tunis, Biology Department, Ecology, Biology and Physiology of aquatic organisms’ laboratory, Tunisia
orcid http://orcid.org/0000-0001-9350-7510

F. Aouini
University of Tunis El Manar, Faculty of Sciences of Tunis, Biology Department, Ecology, Biology and Physiology of aquatic organisms’ laboratory, Tunisia
orcid http://orcid.org/0000-0001-5261-7262

I. Chetoui
University of Tunis El Manar, Faculty of Sciences of Tunis, Biology Department, Ecology, Biology and Physiology of aquatic organisms’ laboratory, Tunisia
orcid http://orcid.org/0000-0002-2259-5397

K. Telahigue
University of Tunis El Manar, Faculty of Sciences of Tunis, Biology Department, Ecology, Biology and Physiology of aquatic organisms’ laboratory, Tunisia
orcid http://orcid.org/0000-0001-8841-9911

N. Soudani
University of Tunis El Manar, Faculty of Sciences of Tunis, Biology Department, Ecology, Biology and Physiology of aquatic organisms’ laboratory, Tunisia
orcid http://orcid.org/0000-0002-7652-9678

M. El Cafsi
University of Tunis El Manar, Faculty of Sciences of Tunis, Biology Department, Ecology, Biology and Physiology of aquatic organisms’ laboratory, Tunisia
orcid http://orcid.org/0000-0002-9771-1110

Abstract


This study aimed to provide information about the changes in fatty acid composition and quality in Ruditapes decussatus tissue after four culinary treatments (steamed, baked, grilled and fried). All treated samples showed a significant decrease in moisture and protein. In contrast, a significant increase in fat content resulted from the grilled and fried treatments. Saturated fatty acid was significantly higher in fresh clams than all cooking processes, except in fried ones. Monounsaturated fatty acid and polyunsaturated fatty acid varied significantly between fresh and cooked clams with high values recorded for fried clams. The n-3/n-6 ratio, peroxide index, EPA+DHA and atherogenicity index decreased significantly after the cooking processes particularly in fried clams. The mineral levels (Mg, Ca and Mn) of cooked clams decreased considerably with grilled and fried treatments. The impacts of cooking on the fatty acid composition and protein content in clam tissue was evaluated by lipid peroxidation (TBARS, PV, FFA, TOR) and protein oxidation (AOPP and PCO), which varied statistically in fried, steamed, grilled and baked samples; indicating alterations in cooked clam tissues structure. Based on our results, steaming is recommended for the preparation of clams because it preserves the most nutritional tissue quality.

Keywords


Cooking processes; Fatty acid composition; Lipid and protein oxidation; Mineral contents; Nutritional quality indices; Ruditapes decussatus

Full Text:


HTML PDF XML

References


Ab Latif W, Sajad AB, Anjum A. 2015. Omega-3 fatty acids and the treatment of depression: a review of scientific evidence. Integr. Med. Res. 4, 132–141.

Al Saghir S, Thurner K, Wagner KH, Frisch G, Luf W, Razzazi FEF, Elmadfa I. 2004. Effects of different cooking procedures on lipid quality and cholesterol oxidation of farmed salmon fish (Salmon salar). J. Agric. Food Chem. 52, 5290–5296.

Amri I, Hmaied F, Loisy F, Lebeau B, Barkallah I, Saidi M, Slim A. 2009. Hepatitis A virus detection in shellfish from Tunisia by reverse transcription-nested PCR –investigation of a correlation between viral and bacterial contamination. Pathol. Biol. 59, 217–21.

Ansorena D, Guembe A, Mendizabal T, Astiasaran I. 2010. Effect of fish and oil Nature on Frying Process and Nutritional Product Quality. J. Food Sci. 75, 62–7.

AOCS. 1989. Official Methods and Recommended Practices of the American Oil Chemists’ Society, 4th edn. Firestone, D. (Ed.). Champaign, CA: American Oil Chemists’ Society. Pp. 5a–40.

Bakar J, Zakipour RE, Cheman YB. 2008. Lipid characteristics in cooked-chillreheated fillets of Indo-Pacific King Mackerel (Scomberomorous guttatus). Food Sci. Technol. 41, 2144–2150

Beccaria M, Costa R, Sullini G, Grasso E, Cacciola F, Dugo P, Mondello L. 2015b. Determination of the triacylglycerol fraction in fish oil by comprehensive liquid chromatography techniques with the support of gas chromatography and mass spectrometry data. Anal. Bioanal. Chem. 407, 5211–5225.

Bejoui S, Boussefa D, Telahigue K, Chetoui I, Ghribi F, Rabeh I, El Cafsi M. 2019. Geographic variation in fatty acid composition and food source of the commercial clam (Ruditapes decussatus, Linnaeus, 1758), from Tunisian coasts: Trophic links. Grasas Aceites 70, e289.

British Nutrition Foundation. 1992. Unsaturated fatty acids nutritional and physiological significance, Report of the British Nutrition Foundation’s Task Force, London: Chapman & Hall.

Bugeon J, Lefevre F, Cardinal M, Uyanik A, Davenel A, Haffray P. 2010. Flesh quality in large rainbow trout with high or low fillet yield. J. Muscle. Foods 21, 702–721.

Candela M, Astiasaran I, Bello J. 1997. Effects of frying and wambolding on fatty acids and cholesterol of sole (Solea solea), codfish (Gadus moubua) and hake (Meduccius medussius). Food Chem. 58, 227–231.

Cecchi G, Basini S, Castano C. 2017. Méthanolyse rapide des huiles en solvant. Revue Francaise des Corps Gras 32, 163–164.

Choi EJ, Park HW, Chung YB, Park SH, Kim JS, Chun HH. 2017. Effect of tempering methods on quality changes of pork loin frozen by cryogenic immersion. Meat. Sci. 124, 69–75.

Costa R, Beccaria M, Grasso El, Albergamo A, Oteri M, Dugo P, Fasulo S, Mondello L. 2015a. Sample preparation techniques coupled to advanced chromatographic methods for marine organisms’ investigation. Anal. Chim. Acta 22, 41–53, ISSN: 0003-2670.

Costa R, Albergamo A, Piparo M, Zaccone G, Capillo G, Manganaro A, Dugo P, Mondello L. 2017. Multidimensional gas chromatographic techniques applied to the analysis of lipids from wild-caught and farmed marine species. Europ. J. Lipid Sci. Technol. 119, 1600043.

Domiszewski Z, Bienkiewicz G, Plust D. 2011. Effects of different heat treatments on lipid quality of striped catfish (Pangasius hypophthalmus). Acta. Sci. Pol. Technol. Alim. 10, 359–373.

El Reffaei WHM, Abbas NS, Atwa M, Abulhamd EM, Rasha EA. 2014. Nutritional value and fatty acid composition of household cooking on fish fatty acids profile using atherogenicity and thrombigenicity indices. J. Food Chem. Nut. 02, 27–41.

Fernández M, Ordóñez JA, Cambero I, Santos C, Pin C, De la Hoz L. 2007. Fatty acid compositions of selected varieties of Spanish ham related to their nutritional implication. Food Chem. 101, 107–112.

Folch J, lees M, Stanley GHS. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509.

Ghribi F, Bejaoui S, Rabeh I, Aouini F, Chetoui I, El Cafsi M. 2017. Effects of Culinary Methods on Nutritional Characteristics of the Edible Shellfish Noah’s Ark (Arca noae L., 1758) from Tunisian Coasts, J. Aqua. Food Prod. Technol.

Gokoglu N, Yerlikaya P, Cengiz E. 2004. Effects of cooking methods on the proximate composition and mineral contents of rainbow trout (Oncorhynchus mykiss). Food Chem. 84, 19–22.

Graci-Arisa MT, Pontes EA, Linares MCG, Garcia-Fernandez MC, Sanchez-Muniz FJ. 2003. Cooking-freezing-reheating (CFR) of sardine (Sardinapilchardus) fillets: Effect of different cooking and reheating procedures on the proximate and fatty acid compositions. Food Chem. 83, 349–356.

Horwitz W, Latimer GW. 2005. Official methods of analyses of the association of analytical chemists international (18th ed). Washington, Gaithersburg, Md.

Hosseini H, Mahmoudzadeh M, Rezaei M, Mahmoudzadeh L, Khaksar R, Khosroshahi NK, Babakhani A. 2014. Effect of different cooking methods on minerals, vitamins and nutritional quality indices of Kutum roach (Rutilus frisii kutum). Food Chem. 148, 86–91.

Hsieh RJ, Kinsella JE. 1989. Oxidation of polyunsaturated fatty acids: mechanisms, products and inhibition with emphasis on fish. Ad. Food Nut. Res. 33, 233–341.

Kayali R, Cakatay U, Akcay T, Altug T. 2006. Effect of alpha-lipoic acid supplementation on markers of protein oxidation in post-mitotic tissues of ageing rat. Cell Biochem. Func. 24, 79–85.

Ktari N, Trabelsi I, Ben Slama R, Ben Salah R, Nasri M, Souissi N. 2015. Effects of cooking methods on physicochemical and microbiological characteristics of Zebra Blenny (Salaria basilisca) fillets. Adv. Tech. Biol. Med. 3, 136.

Lira GM, Barros-Silva KW, Figueiredo BC, Bragagnolo N. 2014. Impact of smoking on the lipid fraction and nutritional value of sea bob shrimp (Xiphopenaeus Kroyeri, Heller, 1862). Food Sci. Technol. 58, 183–187.

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 193, 265–275.

Lund MN, Heinonen M, Baron CP, Estevez M. 2001. Protein oxidation in muscle foods: A review. Mol. Nut. Food Res. 55, 83–95.

Marques A, Teixeira B, Barrento S, Anacleto P, Carvalho ML, Nunes ML. 2010. Chemical composition of Atlantic spider crab Maja brachydactyla: human health implication. J. Food Comp. Anal. 23, 230–237.

Neff MR, Bhavsar SP, Braekevelt E, Arts MT. 2014. Effect of different cooking methods on fatty acid profiles in four freshwater fishes from Laurentian Great lakes region. Food Chem. 164, 544–550.

Ojagh SM, Rezaei M, Razavi SH, Hosseini SMH. 2010. Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chem. 120, 193–198.

Ojea J, Pazos AJ, Martinez D, Novoa S, Sanchez JL, Abad M. 2004. Seasonal variation in weight and biochemical composition of the tissues of Ruditapes decussatus in relation to the gametogenic cycle. Aqu. 238, 451–468.

Pao-Yen L, David M, Marlene P F, Yutaka M, Joseph H, RH B, Kuan-Pin S. 2012. Are omega-3 fatty acids anti-depressants or just mood-improving agents? Mol. Psychiatry 17, 1161–1163.

Parisi G, Giorgi G, Messini A, Poli BM. 2005. Growth performance and quality traits of mussel (Mytillus galloprovincialis, Lamarck) reared in two different sites in Tuscany. Italian J. Ani. Sci. 4, 612–614.

Reznick AZ, Packer L. 1994. Oxidative damage to proteins: Spectrophotometric methods for carbonyl assay. Methods. Enzymol. 233, 357–63.

Rombenso AN, Trushenski JT, Jirsa D, Drawbridge M. 2015. Successful fish oil sparing in white sea bass feeds using saturated fatty acid rich soybean oil and 22/6n3 DHA supplementation. Aqu. 448, 176–185.

Sabeena FKH, Grejsen HD, Jacobsen C. 2011. Potato peel extract as a natural antioxidant in chilled storage of minced horse mackerel (Trachurus trachurus): Effect on lipid and protein oxidation. Food Chem. 131, 843–851.

Saguy IS, Dana D. 2003. Integrated approach to deep fat frying: engineering, nutrition, health and consumer aspects. J. Food Eng. 56, 143–152.

Ulbricht TLV, Southgate DAT. 1991. Coronary heart disease: seven dietary factors. Lancet 338, 985–992.

Weber J, Bochi VC, Ribeiro CP, Victorio AM, Emanuelli E. 2008. Effect of different cooking methods on the oxidation, proximate and fatty acid composition of silver catfish (Rhamdia quelen) fillets. Food Chem. 1, 140–146.




Copyright (c) 2019 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us grasasyaceites@ig.csic.es

Technical support soporte.tecnico.revistas@csic.es