Preparación de nuevas nanoemulsiones a partir de aceite rico en omega-3
DOI:
https://doi.org/10.3989/gya.0229191Palabras clave:
Concentración de emulsionante, Condiciones de homogeneización, Homogeneización a alta presión, Nanoemulsion, Tipo de emulsionanteResumen
Este trabajo tuvo como objetivo producir nanoemulsiones de aceite rico en omega-3 estabilizado en agua usando un homogeneizador de alta presión (HPH). Estudiando los efectos del tipo de emulsionante y su concentración, se llevaron a cabo las condiciones de HPH (presión y número de pasadas dentro de la cámara de homogeneización), así como la viscosidad de fase continua en el índice de polidispersidad (PDI) y el tamaño medio de gota de la nanoemulsión. También se siguió el impacto de la adición de extracto de romero sobre la estabilidad oxidativa de la emulsión. Los resultados mostraron que los emulsionantes de peso molecular pequeño dieron un tamaño de gota pequeño y viceversa. Los resultados también revelaron que hay una disminución paralela en el diámetro medio de las gotitas con el aumento de la concentración de emulsionante, los ciclos de homogeneización (pases) y la presión de homogeneización. Además, cuando aumentó la viscosidad de la fase acuosa, se observó una ligera fluctuación no significativa e irregular en el tamaño de la gota. Además, los resultados demostraron que el extracto de romero mejoró la estabilidad oxidativa de esta nanoemulsión. Nuestros resultados podrían ayudar a formular nanoemulsiones enriquecidas con omega-3 estabilizadas que podrían aplicarse en diferentes alimentos.
Descargas
Citas
American Oil Chemists' Society AOCS, 2005. Official Methods and Recommended Practices of the American Oil Chemists' Society, 5th edn. American Oil Chemists' Society, Champaign.
Anderson C, Sundberg K, Groth O. 1986. Animal model for assessment of skin irritancy. Contact Dermatitis 15, 143-51. https://doi.org/10.1111/j.1600-0536.1986.tb01315.x PMid:3780215
AOAC, 2005. Official Methods of Analysis of the Association of Official Analytical Chemists. AOAC International, Gaithersburg, USA.
Asonye CC, Livinus M, Akpalaba RU, Agu GC, Engwa AG. 2015. Effect of Sodium Lauryl Sulfate (SLS) on the External Adnexia of the Rabbit Eye. Res. J. of Pharm. Toxicol. 01, 12-14.
Benichou A, Aserin A, Garti N. 2004. Double emulsions stabilized with hybrids of natural polymers for entrapment and slow release of active matters. Adv. Colloid Interface 108-9, 29-41. https://doi.org/10.1016/j.cis.2003.10.013 PMid:15072926
Bhardwaj K, Verma N, Trivedi RK, Bhardwaj S, Shukla N. 2015. A novel approach for improvement of oxidative stability of flaxseed oil by blending with palm oil. Int. J. Adv. Res. 3, 1399 - 1407.
Comporti M. 1993. Lipid peroxidation. Biopathological significance. Molecular Aspects Medic. 14, 199-207. https://doi.org/10.1016/0098-2997(93)90006-Y
Din JN, Newby DE, Flapan AD. 2004. Omega 3 fatty acids and cardiovascular disease-fishing for a natural treatment. BMJ 328, 30-35. https://doi.org/10.1136/bmj.328.7430.30 PMid:14703544 PMCid:PMC313905
Fortin PR, Lew RA, Liang MH, Wright EA, Beckett LA, Chalmers TC, Sperling RI. 1995. Validation of a meta-analysis: the effects of fish oil in rheumatoid arthritis. J. Clin. Epidemiol. 48, 1379-1390. https://doi.org/10.1016/0895-4356(95)00028-3
Guglielmini G. 2008. Nanostructured novel carrier for topical application. Clin. Dermatol. 26, 341-346. https://doi.org/10.1016/j.clindermatol.2008.05.004 PMid:18691513
Gurpreet K, Singh SK. 2018. Review of Nanoemulsion Formulation and Characterization Techniques. Indian J. Pharm Sci. 80 (5), 781-789. https://doi.org/10.4172/pharmaceutical-sciences.1000422
Hamed SF, Abo-Elwafa GA. 2013. Comparison between Four Different Techniques In Extraction Of Natural Antioxidants. J. Food Indus. Nutr. Sci. 3, 43-53.
Hamed SF, Wagdy SM, Megahed MG. 2012. Chemical Characteristics and Antioxidant Capacity of Egyptian and Chinese Sunflower Seeds: A Case Study. Life Sci. J. 9, 421-429.
Hibbeln JR, Davis JM, Steer C, Emmett P, Rogers I, Williams C, Golding J. 2007. Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): an observational cohort study. Lancet 369, 578-585. https://doi.org/10.1016/S0140-6736(07)60277-3
Kabri TH, Arab-Tehrany E, Belhaj N, Linde M, 2011. Physico-chemical characterization of nanoemulsions in cosmetic matrix enriched on omega-3. J. Nanobiotech. 9, 41. https://doi.org/10.1186/1477-3155-9-41 PMid:21936893 PMCid:PMC3200990
Karbstein H, Schubert H. 1995. Developments in the continuous mechanical production of oil-in-water macro-emulsions. Chem. Eng. Proc. 34, 205-211. https://doi.org/10.1016/0255-2701(94)04005-2
Kayashima T, Matsubara K. 2012. Antiangiogenic effect of carnosic acid and carnosol, neuroprotective compounds in rosemary leaves. Biosci. Biotechnol. Biochem. 76, 115-119. https://doi.org/10.1271/bbb.110584 PMid:22232247
Kris-Etherton PM, Harris WS, Appel LJ, American Heart Association Nutrition Committee. 2003. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 107, 512. https://doi.org/10.1161/01.ATV.0000038493.65177.94 PMid:12588785
Lauritzen L, Hansen HS, Jørgensen MH, Michaelsen KF. 2001. The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog. Lipid Res. 40, 1-94. https://doi.org/10.1016/S0163-7827(00)00017-5
Lindberg M, Farm G, Scheynius A. 1991. Differential effects of sodium lauryl sulphate and non-ionic acid on the expression of CD1a and ICAM-1 in human epidermis. Acta Derm. Venereol. 71, 384-8.
Malvern Instruments Worldwide 2011. Dynamic Light Scattering, Common Terms Defined; Inform White Paper; Malvern Instruments Limited: Malvern, UK, pp. 1-6.
Mao L, Xu D, Yang J, Yuan F, Gao Y, Zhao, J. 2009. Effects of small and large molecule emulsifiers on the characteristics of β-carotene nanoemulsions prepared by high pressure homogenization. Food Technol. Biotechnol. 47, 336-342.
McClements DJ. 2005. Food Emulsions: Principles, practice, and techniques (2nd ed). CRC Press, Boca Raton, Florida.
McClements DJ. 2015. Food emulsions: Principles, practice, and techniques (3rd ed.). In CRC series in contemporary food science Boca Raton: CRC Press.
McClements DJ, Decker EA. 2008. Lipids. In Food Chemistry. Damodaran S, Parkin KL, Fennema OR, eds. CRC Press, Boca Raton, FL, USA. p 155-216.
Mcclements DJ, Rao J. 2011. Food-Grade Nanoemulsions: Formulation, Fabrication, Properties, Performance, Biological Fate, and Potential Toxicity. Crit. Rev. Food Sci. Nutr. 51, 285-330. https://doi.org/10.1080/10408398.2011.559558 PMid:21432697
Nieto G, Estrada M, Jordán MJ, Garrido MD, Bañon S. 2011. Effects in ewe diet of rosemary by-product on lipid oxidation and the eating of cooked lamb under retail display conditions. Food Chem. 124, 1423-1429. https://doi. org/10.1016/j.foodchem.2010.07.102
Nieto G, Ros G, Castillo J. 2018. Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis L.): A Review. Medicines 5, 98. https://doi.org/10.3390/medicines5030098 PMid:30181448 PMCid:PMC6165352
Özyurt G. 2013. Effects of rosemary (Rosmarinus officinalis) extract addition on oxidative stability of fried sea bream (Sparus aurata) during chill storage (4 °C). J. Food Proc. Pres. 37, 1039-1042. https://doi.org/10.1111/j.1745-4549.2012.00796.x
Peet M, Stokes C. 2005. Omega-3 fatty acids in the treatment of psychiatric disorders. Drugs 65, 1051-1059., https://doi.org/10.2165/00003495-200565080-00002 PMid:15907142
Qian C, McClements DJ. 2011. Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting droplet size. Food Hydrocolloids 25, 1000-1008. https://doi.org/10.1016/j.foodhyd.2010.09.017
Ramadan MF, Wahdan KMM. 2012. Blending of corn oil with black cumin (Nigella sativa) and coriander (Coriandrum sativum) seed oils: Impact on functionality, stability and radical scavenging activity. Food Chem. 132, 873-879. https://doi.org/10.1016/j.foodchem.2011.11.054
Ramisetty KA, Shyamsunder R. 2011. Effect of Ultrasonication on Stability of Oil in Water Emulsions. Inter. J. Drug Delivery 3, 133-142. https://doi.org/10.5138/ijdd.2010.0975.0215.03063
Sagalowicz L, Leser ME. 2010. Delivery systems for liquid food products. Current Opinion in Colloid and Interface Science 15, 61-72. https://doi.org/10.1016/j.cocis.2009.12.003
Shafiq S, Shakeel F, Talegaonkar S, Ali J, Baboota S, Ahuja A, Khar RK, Ali M. 2007. Formulation development and optimization using nanoemulsion technique: A technical note. Pharm. Sci. Tech. 8, E12-E17. https://doi.org/10.1208/pt0802028 PMid:17622106 PMCid:PMC2750368
Shahidi F, Zhong Y. 2005. Lipid oxidation: Measurement methods. In F. Shahidi (Ed.), Bailey's industrial oil and fat products (6th ed., Vol. 1, pp. 357-386). Hoboken, NJ: JohnWiley & Sons, Inc. https://doi.org/10.1002/047167849X.bio050
Snedecor GW, Cochran WG. 1994. Statistical Methods (8th ed.). New Delhi: Oxford and IBH Pub.
Tan CP, Nakajima M. 2005. β-Carotene nanodispersions: preparation, characterization and stability evaluation. Food Chem. 92, 661-71. https://doi.org/10.1016/j.foodchem.2004.08.044
Ucak İ, Özogul Y, Durmus M. 2011. The effects of rosemary extract combination with vacuum packing on the quality changes of Atlantic mackerel fish burgers. Inter. J. Food Sci. Tech. 46, 1157-1163. https://doi.org/10.1111/j.1365-2621.2011.02610.x
Wang X, Jiang Y, Wang Y, Huang M, Ho CT, Huang Q. 2008. Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem. 108, 419-424. https://doi.org/10.1016/j.foodchem.2007.10.086 PMid:26059118
Wang XY, Wang YW, Huang R. 2009. Enhancing stability and oral bioavailability of polyphenols using nanoemulsions. In: Micro/Nanoencapsulation of Active Food Ingredients. Q. R. Huang, P. Given and M. Qian (Editors). ACS Symposium Series 1007. Washington, DC. https://doi.org/10.1021/bk-2009-1007.ch013
Yuan Y, Gao Y, Zhao J, Mao L. 2008. Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Res. Inter. 41, 61-68. https://doi.org/10.1016/j.foodres.2007.09.006
Yun J-M, Surh J. 2012. Fatty acid composition as a predictor for the oxidation stability of Korean vegetable oils with or without induced oxidative stress. Prev. Nutr. Food Sci. 17, 158-165. https://doi.org/10.3746/pnf.2012.17.2.158 PMid:24471078 PMCid:PMC3866755
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Puede consultar desde aquí la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.