Semilla de quinoa: Fuente de nutracéuticos lipófilos para la prevención del síndrome metabólico en modelo de rata

Autores/as

DOI:

https://doi.org/10.3989/gya.1104222

Palabras clave:

Ácidos grasos, Extractos lipófilos, Fructosa, Semilla de quinoa, Síndrome metabólico, Tocoferol

Resumen


El síndrome metabólico (SM) es un conjunto de cambios metabólicos que incluyen hipertrigliceridemia, tolerancia elevada a la glucosa e hígado graso. El objetivo de la investigación fue estudiar la bioactividad de extractos de éter de petróleo preparados a partir de quinoa 1 y quinoa Hualhuas en modelo de rata con SM. En los extractos se evaluaron los ácidos grasos y el α-tocoferol. El SM se indujo mediante la alimentación con una dieta alta en fructosa y grasas (HFFD). Se asignaron cuatro grupos de ratas. El control se alimentó con una dieta equilibrada, otro grupo se alimentó con una dieta HFFD y dos grupos de prueba alimentados con HFFD se trataron con quinoa 1 o extracto de hualhuas. Se evaluaó la tolerancia a la glucosa, los lípidos plasmáticos, los biomarcadores de estrés oxidativo, los lípidos hepáticos y la histopatología del hígado y el corazón. Los resultados mostraron que los extractos de ambas variedades de quinoa tenían el potencial de prevenir el SM; aunque la quinoa 1 fue más efectiva. En ambas variedades el ácido graso principal fue el linoleico. Las hualhuas mostraron mayor porcentaje de ácido linolénico que la quinoa 1, mientras que la quinoa 1 presentó más alfa-tocoferol.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Al-Okbi SY, Hussein AMS, Elbakry HFH, Fouda KA, Mahmoud KF, Hassan MF. 2018. Health benefits of fennel, rosemary volatile oils and their nano-forms in dyslipidemic rat model. Pakistan J. Biolog. Sci. 21 (7), 348-358. https://doi.org/10.3923/pjbs.2018.348.358 PMid:30417995

Al-Okbi SY, Mohammed SE, Al-Siedy ESK, Ali NA. 2020. Fish oil and primrose oil suppress the progression of Alzheimer's like disease induced by aluminum in rats. J. Oleo Sci. 69 (7), 771-782. https://doi.org/10.5650/jos.ess20015 PMid:32522946

Al-Okbi SY, Abd El Ghani S, Elbakry HFH, Mabrok HB, Nasr SM, Desouky HM, Mahmoud KF. 2021. Kishk Sa′eedi as a potential functional food for management of metabolic syndrome: A study of the possible interaction with pomegranate seed oil and/ or gum Arabic. J. Herbmed. Pharmacol. 10 (3), 319-330. https://doi.org/10.34172/jhp.2021.37

AAFRD-Alberta Agriculture, Food and Rural Development. Quinoa-The Next Cinderella Crop for Alberta; el Hafid, R., Aitelmaalem, H., Driedger, D., Bandara, M., Stevenson, J., Eds.; Technical Report; Alberta Agriculture, Food and Rural Development (AAFRD): Edmonton, AB, Canada, 2005. p. 18.

Altuna JL, Silva M, Álvarez M, Quinteros MF, Morales D, Carrillo W. 2018. Ecuadorian quinoa (Chenopodium quinoa willd) fatty acids profile. Asian J. Pharm. Clin. Res. 11 (11), 209-211. https://doi.org/10.22159/ajpcr.2018.v11i11.24889

Bancroft JD, Layton C. 2019. The Hematoxylins and Eosin. In SK Suvarna, C Layton, JD Bancroft [Ed.] Bancroft′s Theory and Practice of Histological Techniques. Elsevier, Vol. 8. p. 126-38. https://doi.org/10.1016/B978-0-7020-6864-5.00010-4

Bibus D, Lands B. 2015. Balancing proportions of competing omega-3 and omega-6 highly unsaturated fatty acids (HUFA) in tissue lipids. Prostaglandins Leukot Essent Fatty Acids. 99, 19-23. https://doi.org/10.1016/j.plefa.2015.04.005 PMid:26002802

Bovolini A, Garcia J, Andrade MA, Duarte, JA. 2021. Metabolic syndrome pathophysiology and predisposing factors. Int. J. Sports Med. 42 (3), 199-214. https://doi.org/10.1055/a-1263-0898 PMid:33075830

Burstein M, Scholnick HR, Morfin R. 1970. Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions. J. Lipid Res. 11 (6), 583-595. https://doi.org/10.1016/S0022-2275(20)42943-8 PMid:4100998

Cequier-Sànchez E, Rodrìguez C, Ravelo G, Zàrate R. 2008. Dichloromethane as a solvent for lipid extraction and assessment of lipid classes and fatty acids from samples of different natures. J. Agric. Food Chem. 56 (12), 4297-4303. https://doi.org/10.1021/jf073471e PMid:18505264

Gabrial SG, Shakib MR, Gabrial GN. 2016. Effect of pseudocereal-based breakfast meals on the first and second meal glucose tolerance in healthy and diabetic subjects. Open Access Maced. J. Med. Sci. 4 (4), 565-573. https://doi.org/10.3889/oamjms.2016.115 PMid:28028392 PMCid:PMC5175500

Indarti E, Majid MIA, Hashim R, Chong, A. 2005. Direct FAME synthesis for rapid total lipid analysis from fish oil and cod liver oil. J. Food Compost. Anal. 18 (2-3), 161-170. https://doi.org/10.1016/j.jfca.2003.12.007

James LE. 2009. Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Adv. Food Nutr. Res. 58, 1-31. https://doi.org/10.1016/S1043-4526(09)58001-1 PMid:19878856

Koracevic D, Koracevic G, Djordjevic V, Andrejevic S, Cosic V. 2001. Method for the measurement of antioxidant activity in human fluids. J. Clin. Pathol. 54 (5), 356-61. https://doi.org/10.1136/jcp.54.5.356 PMid:11328833 PMCid:PMC1731414

Koziol MJ. 1993. Quinoa: A potential new oil crop, in Janick J, Simon JE (Eds.) New crops. Wiley, New York, pp. 328-336.

Lee YY, Park HM, Lee CK, Kim SL, Hwang, T, Choi MS, Kwon Y, Kim WH, Kim SJ, Lee SC, Kim YH. 2012. Comparing extraction methods for the determination of tocopherols and tocotrienols in seeds and germinating seeds of soybean transformed with OsHGGT. J. Food Comp. Anal. 27 (1), 70-8. https://doi.org/10.1016/j.jfca.2012.03.010

Lemieux I, Després J-P. 2020. Metabolic syndrome: Past, present and future. Nutrients 12 (11), 3501. https://doi.org/10.3390/nu12113501 PMid:33202550 PMCid:PMC7696383

Li L, Lietz G, Bal W, Watson A, Morfey B, Seal C. 2018. Effects of quinoa (Chenopodium quinoa Willd.) consumption on markers of CVD Risk. Nutrients 10 (6), pii: E777. https://doi.org/10.3390/nu10060777 PMid:29914146 PMCid:PMC6024323

Megraw R, Dunn D, Biggs H. 1979. Manual and continuous flow colorimetry of triglycerols by a fully enzymatic method. Clin. Chem. 25 (2), 273-284. https://doi.org/10.1093/clinchem/25.2.273 PMid:759021

Mithila MV, Khanum F. 2015. Effectual comparison of quinoa and amaranth supplemented diets in controlling appetite; a biochemical study in rats. J. Food Sci. Technol. 52 (10), 6735-4671. https://doi.org/10.1007/s13197-014-1691-1 PMid:26396423 PMCid:PMC4573157

Nwichi SO, Adewole EK, Oada DA, Ogidiama O, Mokobia OE, Farombi EO. 2012. Cocoa powder extracts exhibits hypolipidemic potential in cholesterol-fed rats. Afr. J. Med. Med. Sci. 41, Suppl 39-49.

Pereira E, Encina-Zelada C, Barros L, Gonzales-Barron U, Cadavez V, Ferreira ICFR. 2018. Chemical and nutritional characterization of Chenopodium quinoa Willd (quinoa) grains: A good alternative to nutritious food. Food Chem. 280, 110-114. https://doi.org/10.1016/j.foodchem.2018.12.068 PMid:30642475

Repo-Carrasco R, Espinoza C and Jacobsen SE. 2003. Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kaniwa (Chenopodium pallidicaule). Food Rev. Int. 19, 179-189. https://doi.org/10.1081/FRI-120018884

Satoh K. 1978. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clin. Chim. Acta 90 (1), 37-43. https://doi.org/10.1016/0009-8981(78)90081-5 PMid:719890

Schriewer H, Kohnert U, Assmann G. 1984. Determination of LDL cholesterol and LDL apolipoprotein B following precipitation of VLDL in blood serum with phosphotungstic acid/MgCl2. J. Clin. Chem. Clin. Biochem. 22 (1), 35-40. https://doi.org/10.1515/cclm.1984.22.1.35 PMid:6699550

Shen Y, Zheng L, Peng Y, Zhu X, Liu F, Yang X, Li H. 2022. Physicochemical, antioxidant and anticancer characteristics of seed oil from three Chenopodium quinoa genotypes. Molecules 27, 2453. . https://doi.org/10.3390/molecules27082453 PMid:35458651 PMCid:PMC9025313

Tang Y, Li X, Chen PX, Zhang B, Hernandez M, Zhang H, Marcone MF, Liu R, Tsao R. 2015. Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chem. 174, 502-508. https://doi.org/10.1016/j.foodchem.2014.11.040 PMid:25529712

Tang Y, Li X, Chen PX, Zhang B, Liu R, Hernandez M, Draves J, Marcone MF, Tsao R. 2016. Assessing the fatty acid, carotenoid, and tocopherol compositions of Amaranth and Quinoa seeds grown in Ontario and their overall contribution to nutritional quality. J. Agric. Food Chem. 64 (5), 1103-10. https://doi.org/10.1021/acs.jafc.5b05414 PMid:26760897

Vega-Gálvez, A, Miranda M, Vergara J, Uribe E, Puente L, Martínez EA. 2010. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. J. Sci. Food Agric. 90 (15), 2541-2547. https://doi.org/10.1002/jsfa.4158 PMid:20814881

Watson D. 1960. A simple method for the determination of serum cholesterol. Clin. Chim. Acta. 5 (5), 637-643. https://doi.org/10.1016/0009-8981(60)90004-8 PMid:13783424

Publicado

2024-03-22

Cómo citar

1.
Al-Okbi SY, Hamed TE, Elewa TA, Ramadan A .A., Bakry BA, El Karamany MF. Semilla de quinoa: Fuente de nutracéuticos lipófilos para la prevención del síndrome metabólico en modelo de rata. Grasas aceites [Internet]. 22 de marzo de 2024 [citado 13 de mayo de 2024];75(1):e542. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/2156

Número

Sección

Investigación

Datos de los fondos

National Research Centre
Números de la subvención 11030126