Parámetros químicos y actividad antioxidante de aceitunas de mesa al estilo natural de color cambiante de la variedad Sigoise

Autores/as

DOI:

https://doi.org/10.3989/gya.0559201

Palabras clave:

Actividad antioxidante, Azúcares, Polifenoles, Tocoferoles, Variedad Sigoise

Resumen


La caracterización química de las aceitunas en salmuera de color cambiante de la variedad Sigoise se ha estudiado durante el proceso de elaboración, en particular la concentración de fenoles, azúcares, tocoferoles, ácidos grasos y la actividad antioxidante. La concentración de oleuropeína, salidrósido, hidroxitirosol 4-glucósido, rutina, ligustrósido y verbascósido disminuyó un 16,90-83,34% durante el primer mes en salmuera. El 90% de la glucosa fue consumida debido al metabolismo de la microbiota fermentativa. El contenido en tocoferoles se mantuvo constante durante el proceso y solo disminuyó el α-tocoferol. Los ácidos grasos no se vieron afectados. La pérdida de actividad antioxidante se tradujo en una disminución del porcentaje de inhibición del radical DPPH de un 75,91% del fruto fresco a 44,20% después de 150 días en salmuera. A pesar de todo, la aceituna color cambiante de la variedad Sigoise en salmuera es una buena fuente de compuestos bioactivos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ben Othman N, Roblain D, Chammen N, Thonart P, Hamdi M. 2009. Antioxidant phenolic compounds loss during the fermentation of Chétoui olives. Food Chem. 116, 662-669. https://doi.org/10.1016/j.foodchem.2009.02.084

Bleve G, Tufariello M, Durante M, Grieco F, Ramires FA, Mita G, Tasioula-Margari M, Logrieco AF. 2015. Physico-chemical characterization of natural fermentation process of Conservolea and Kalamata table olives and development of a protocol for the pre-selection of fermentation starters. Food Microbiol. 46, 368-382. https://doi.org/10.1016/j.fm.2014.08.021 PMid:25475307

Bonatsou S, Benitez A, Rodríguez-Gómez F, Panagou EZ, Arroyo-López FN. 2015. Selection of yeasts with multifunctional features for application as starters in natural black table olive processing. Food Microbiol. 46, 66-73. https://doi.org/10.1016/j.fm.2014.07.011 PMid:25475268

Boskou D, Campasio S, Clodoveo ML. 2014. Table olives as source of bioactive compounds, in: Boskou D (Ed.) Olive and olive oil bioactive constituents, 1st edition. AOCS press, Urbana, IL, USA. https://doi.org/10.1016/B978-1-63067-041-2.50007-0

Boskou G, Salta FN, Chrysostomou S, Mylona A, Chiou A, Andrikopoulos NK. 2006. Antioxidant capacity and phenolic profile of table olives from the Greek market. Food Chem. 94, 558-564. https://doi.org/10.1016/j.foodchem.2004.12.005

European Commission regulation (ECC) No 2568/91 of July (1991) on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis, Official Journal of the European Communities 1991, OJ L 248, 5.9, 1-110.

Commission Delegated Regulation (EU) 2016/2095 of 26 September 2016 amending Regulation (EEC) No 2568/91 of July (1991) on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Official Journal of the European Union 326/1-6.

Hassapidou MN, Balatsouras GD, Manoukas AG. 1994. Effect of processing upon the tocopherol and tocotrienol composition of table olives. Food Chem. 50, 111-114. https://doi.org/10.1016/0308-8146(94)90105-8

International Olive Oil Council (IOC). 2004. Trade Standard Applying to Table Olives, COI/OT/NC No. 1, Resolution No. RES-2/91-IV/04.

International Olive Oil Council (IOC). 2020. Updates Series of World Statistics on Production, Imports, Exports and Consumption. Internet: http://www.internationaloliveoil.org/estaticos/view/132-world-table-olive-figures. Accessed 19 May 2020

Issaoui M, Dabbou S, Mechri B, Nakbi M, Chehab H, Hammami M. 2011. Fatty acid profile, sugar composition, and antioxidant compounds of table olives as affected by different treatments. Eur. J. Lipid Sci. Tech. 232, 867-876. https://doi.org/10.1007/s00217-011-1455-3

Jimenez A, Guillen R, Fernandez-Bolaños J, Heredia A. 1997. Factors Affecting the "Spanish Green Olive" Process: Their Influence on Final Texture and Industrial Losses. J. Agric. Food Chem. 45, 4065-4070. https://doi.org/10.1021/jf970161v

Johnson R, Melliou E, Zweigenbaum J, Mitchell AE. 2018. Quantitation of oleuropein and related phenolics in cured Spanish-style green, California-style black ripe and Greek-style natural fermentation olives. J. Agric. Food Chem. 66, 2121-2128. https://doi.org/10.1021/acs.jafc.7b06025 PMid:29424233

Kacem M, Karam NE. 2006. Microbiological study of naturally fermented Algerian green olives: isolation and identification of lactic acid bacteria and yeasts along with the effects of brine solutions obtained at the end of olive fermentation on Lactobacillus plantarum growth. Grasas Aceites 57, 292-300. https://doi.org/10.3989/gya.2006.v57.i3.51

Kiai H, Hafidi A. 2014. Chemical composition changes in four green olive cultivars during spontaneous fermentation. LWT - Food Sci. Technol. 57, 663-670. https://doi.org/10.1016/j.lwt.2014.02.011

McDonald S, Prenzler PD, Antolovich M, Robards K. 2001. Phenolic content and antioxidant activity of olive extracts. Food Chem. 73, 73-87. https://doi.org/10.1016/S0308-8146(00)00288-0

Marsilio V, Campestre C, Lanza B, De Angelis M. 2001. Sugar and polyol compositions of some European olive fruit varieties (Olea europaea L.) suitable for table olive purposes. Food Chem 72, 485-490. https://doi.org/10.1016/S0308-8146(00)00268-5

Medina E, Brenes M, Romero C, Garcia A, Castro A. 2007. Main antimicrobial compounds in table olives. J. Agr. Food Chem. 55, 9817-9823. https://doi.org/10.1021/jf0719757 PMid:17970590

Medina E, Gori C, Servili M, de Castro A, Romero C, Brenes M. 2010. Main variables affecting the lactic acid fermentation of table olives. Int. J. Food Sci. Tech. 45, 1291-1296. https://doi.org/10.1111/j.1365-2621.2010.02274.x

Medina E, Romero C, Brenes M, García P, de Castro A, García A. 2008. Profile of anti-lactic acid bacteria compounds during the storage of olives which are not treated with alkali. Eur. J. Lipid Sci. Tech. 228, 133-138. https://doi.org/10.1007/s00217-008-0916-9

Mettouchi S, Bachir Bey M, Tamendjari A, Louaileche H. 2016. Antioxidant activity of table olives as influenced by processing method. International Journal of Chemical and Biomolecular Science 2, 8-14. http://www.aiscience.org/journal/ijcbs

Poiana M, Romeo FV. 2006. Changes in chemical and microbiological parameters of some varieties of Sicily olives during natural fermentation. Grasas Aceites 57, 402-408. https://doi.org/10.3989/gya.2006.v57.i4.66

Ramírez E, Brenes M, de Castro A, Romero C, Medina E. 2017. Oleuropein hydrolysis by lactic acid bacteria in natural green olives. LWT - Food Sci. Technol. 78, 165-171. https://doi.org/10.1016/j.lwt.2016.12.040

Ramirez E, Brenes M, Garcia P, Medina E, Romero C. 2016. Oleuropein hydrolysis in natural green olives: importance of endogenous enzymes. Food Chem. 206, 204-209. https://doi.org/10.1016/j.foodchem.2016.03.061 PMid:27041317

Rallo P, Morales Sillero A, Brenes M, Jimenez MR, Sanchez AH, Suarez MP, Casanova L, Romero C. 2018. Elaboration of table olives: assessment of new olive genotypes. Eur. J. Lipid Sci. Tech. 120, 1800008. https://doi.org/10.1002/ejlt.201800008

Romero C, Brenes M, Garcia P, Garcia A, Garrido A. 2004a. Polyphenol changes during fermentation of naturally black olives. J. Agr. Food Chem. 52, 1973-1979. https://doi.org/10.1021/jf030726p PMid:15053538

Romero C, Brenes M, Garcia P, Garcia A, Garrido, A. 2004b. Effect of cultivar and processing method on the contents of polyphenols in table olives. J. Agr. Food Chem. 52, 479-484. https://doi.org/10.1021/jf030525l PMid:14759136

Rovellini P, Azzolini M, Cortesi N. 1997. Tocoferoli e tocotrienoli in oli e grassi vegetali. Riv. Ital. Sostanze Gr. 74, 1-5.

Sagratini G, Allegrini M, Caprioli G, Cristalli G, Giardina D, Maggi F. 2013. Simultaneous determination of squalene, α-tocopherol and β-carotene in table olives by solid phase extraction and high performance liquid chromatography with diode array detection. Food Anal. Methods 6, 5-60. https://doi.org/10.1007/s12161-012-9422-6

Sakouhi F, Harrabi S, Absalon C, Sbei K, Boukhchina S, Kallel H. 2008. α-Tocopherol and fatty acids contents of some Tunisian table olives (Olea europea L.): Changes in their composition during ripening and processing. Food Chem. 108, 833-839. https://doi.org/10.1016/j.foodchem.2007.11.043 PMid:26065742

Sousa A, Malheiro R, Casal S, Bento A, Pereira JA. 2014. Antioxidant activity and phenolic composition of Cv. Cobrançosa olives affected through the maturation process. J. Funct. Foods 11, 20-29. https://doi.org/10.1016/j.jff.2014.08.024

Susamci E, Romero C, Tuncay O, Brenes M. 2017. An explanation for the natural debittering of Hurma olives during ripenning on the tree. Grasas Aceites 68, 182-189. https://doi.org/10.3989/gya.1161162

Tovar MJ, Romero M P, Girona J, Motilva MJ. 2002. L-Phenylalanine ammonia-lyase activity and concentration of phenolics in developing olive (Olea europaea L cv Arbequina) fruit grown under different irrigation regimes. J. Sci. Food Agric. 82, 892-898. https://doi.org/10.1002/jsfa.1122

Zhan Y, Hong-Dong C, Yao YJ. 2006. Antioxidant activities of aqueous extract from cultivated fruit-bodies of Cordyceps militaris (L.) Link in vitro. J. Integr. Plant Biol. 48, 1365-1370. https://doi.org/10.1111/j.1744-7909.2006.00345.x

Publicado

2021-09-15

Cómo citar

1.
Ait Chabane F, Tamendjari A, Rovellini P, Romero C, Medina E. Parámetros químicos y actividad antioxidante de aceitunas de mesa al estilo natural de color cambiante de la variedad Sigoise. Grasas aceites [Internet]. 15 de septiembre de 2021 [citado 23 de febrero de 2025];72(3):e419. Disponible en: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1891

Número

Sección

Investigación

Datos de los fondos

Ministerio de Ciencia, Innovación y Universidades
Números de la subvención RTI2018-093994-J-I00

Ministerio de Ciencia, Innovación y Universidades
Números de la subvención RyC2018-024752-I

Artículos más leídos del mismo autor/a