Variabilidad fenólica del fruto en el cultivo de olivo ‘Arbequina’ en condiciones climáticas mediterráneas y subtropicales
DOI:
https://doi.org/10.3989/gya.1002202Palabras clave:
Aceituna, Ambiente, Fecha de recolección, Localidad, MadurezResumen
En el presente trabajo se compara la variabilidad del contenido y composición en fenoles de la variedad de olivo ‘Arbequina’ en cuatro localidades con clima Mediterráneo y dos con clima Sub-Tropical. Dos de las localidades mediterráneas y las dos Sub-Tropicales contaban con riego por goteo, mientras que las dos mediterráneas restantes estaban en secano. La disponibilidad de agua y momento de recolección parece ser un factor más importante que la temperatura del aire en el contenido y composición de fenoles del fruto. La mayor parte de la variabilidad asociada a la localidad estuvo causada por los altos valores encontrados en las dos localidades mediterráneas en secano, respecto a las otras cuatro localidades en regadío. Solo pequeñas diferencias se encontraron entre las cuatro localidades en regadío, a pesar de que dos eran mediterráneas y las otras dos sub-tropicales. Además, un descenso acusado del contenido de la mayoría de los fenoles analizados se ha observado conforme avanzaba la fecha de recolección.
Descargas
Citas
Abaza L, Taamalli A, Arráez-Román D, Segura-Carretero A, Fernández-Gutierrérez A, Zarrouk M, Youssef N. Ben 2017. Changes in phenolic composition in olive tree parts according to development stage. Food Res. Int. 100, 454-461. https://doi.org/10.1016/j.foodres.2016.12.002 PMid:28964368
Abenoza M, Lasa Dolhagaray JM, Benito M, Oria R, Sánchez-Gimeno AC, Cristina A, Gimeno S. 2015. The evolution of Arbequina olive oil quality during ripening in a commercial super-high density orchard in north-east Spain. Riv. Ital. Delle Sostanze Grasse 92, 83-92.
Alowaiesh B, Singh Z, Fang Z, Gorge S, Kailis SG. 2018. Harvest time impacts the fatty acid compositions phenolic compounds and sensory attributes of Frantoio and Manzanilla olive oil. Sci. Hortic. 234, 74-80. https://doi.org/10.1016/j.scienta.2018.02.017
Bajoub A, Carrasco-Pancorbo A, Ajal EA, Ouazzani N, Fernández-Gutiérrez A. 2015. Potential of LC-MS phenolic profiling combined with multivariate analysis as an approach for the determination of the geographical origin of north Moroccan virgin olive oils. Food Chem. 166, 292-300. https://doi.org/10.1016/j.foodchem.2014.05.153 PMid:25053059
Ben Ghorbal A, Leventdurur S, Agirman B, Boyaci-Gunduz CP, Kelebek H, Carsanba E, Darici M, Erten H. 2018. Influence of geographic origin on agronomic traits and phenolic content of cv. Gemlik olive fruits. J. Food Compos. Anal. 74, 1-9. https://doi.org/10.1016/j.jfca.2018.08.004
Bengana M, Bakhouche A, Lozano-Sánchez J, Amir Y, Youyou A, Segura-Carretero A, Fernández-Gutiérrez A. 2013. Influence of olive ripeness on chemical properties and phenolic composition of Chemlal extra-virgin olive oil. Food Res. Int. 54, 1868-1875. https://doi.org/10.1016/j.foodres.2013.08.037
Benito M, Lasa JM, Gracia P, Oria R, Abenoza M, Varona L, Sánchez-Gimeno AC. 2013. Olive oil quality and ripening in super-high-density Arbequina orchard. J. Sci. Food Agric. 93, 2207-2220. https://doi.org/10.1002/jsfa.6028 PMid:23413119
Bodoira R, Torres M, Pierantozzi P, Taticchi A, Servili M, Maestri D. 2015. Oil biogenesis and antioxidant compounds from "Arauco" olive (Olea europaea L.) cultivar during fruit development and ripening. Eur. J. Lipid Sci. Technol. 117, 377-388. https://doi.org/10.1002/ejlt.201400234
Bouaziz M, Chamkha M, Sayadi S. 2004. Comparative study on phenolic content and antioxidant activity during maturation of the olive cultivar Chemlali from Tunisia. J. Agric. Food Chem. 52, 5476-5481. https://doi.org/10.1021/jf0497004 PMid:15315388
Cirilli M, Caruso G, Gennai C, Urbani S, Frioni E, Ruzzi M, Servili M, Gucci R, Poerio E, Muleo R. 2017. The Role of Polyphenoloxidase Peroxidase and β -Glucosidase in Phenolics Accumulation in Olea europaea L. Fruits under Different Water Regimes. Front. Plant Sci. 8, 1-13. https://doi.org/10.3389/fpls.2017.00717 PMid:28536589 PMCid:PMC5422556
Dabbou SS, Chehab H, Taticchi A, Servili M, Hammami M. 2015. Content of Fatty Acids and Phenolics in Coratina Olive Oil from Tunisia: Influence of Irrigation and Ripening. Chem. Biodivers. 12, 397-406. https://doi.org/10.1002/cbdv.201400142 PMid:25766913
Dag A, Kerem Z, Yogev N, Zipori I, Lavee S, Ben-David E. 2011. Influence of time of harvest and maturity index on olive oil yield and quality. Sci. Hortic. 127, 358-366. https://doi.org/10.1016/j.scienta.2010.11.008
Fernández-Escobar R, de la Rosa R, Leon L, Gomez JA, Testi L, Orgaz F, Gil-Ribes JA, Quesada-moraga E, Trapero-Casas A. 2013. Evolution and sustainability of the olive production systems. Options Méditerranéennes. Séries A Mediterr. Semin. 106, 11-41.
Ferro MD, Lopes E, Afonso M, Peixe A, Rodrigues FM, Duarte MF. 2020. Phenolic Profile Characterization of 'Galega Vulgar' and 'Cobrançosa' Portuguese Olive Cultivars along the Ripening Stages. Appl. Sci. 10, 3930. https://doi.org/10.3390/app10113930
Frias L, Hermoso M, Jimenez A, Llavero del Pozo M, Morales J, Ruano T, Uceda M. 1991. Analistas de laboratorio de almazara. Junta de Andalucía Sevilla.
García-Rodríguez R, Romero-Segura C, Sanz C, Sánchez-Ortiz A, Pérez AG. 2011. Role of polyphenol oxidase and peroxidase in shaping the phenolic profile of virgin olive oil. Food Res. Int. 44, 629-635. https://doi.org/10.1016/j.foodres.2010.12.023
García JM, Hueso A, Gómez-del-Campo M. 2020. Deficit irrigation during the oil synthesis period affects olive oil quality in high-density orchards (cv. Arbequina). Agric. Water Manag. 230, 105858. https://doi.org/10.1016/j.agwat.2019.105858
Gómez-Rico A, Salvador MD, La Greca M, Fregapane G. 2006. Phenolic and volatile compounds of extra virgin olive oil (Olea europaea L. Cv. Cornicabra) with regard to fruit ripening and irrigation management. J. Agric. Food Chem. 54, 7130-7136. https://doi.org/10.1021/jf060798r PMid:16968073
Gómez-Rico A, Fregapane G, Salvador MD. 2008. Effect of cultivar and ripening on minor components in Spanish olive fruits and their corresponding virgin olive oils. Food Res. Int. 41, 433-440. https://doi.org/10.1016/j.foodres.2008.02.003
Gucci R, Caruso G, Gennai C, Esposto S, Urbani S, Servili M. 2019. Fruit growth yield and oil quality changes induced by deficit irrigation at different stages of olive fruit development. Agric. Water Manag. 212, 88-98. https://doi.org/10.1016/j.agwat.2018.08.022
Landa BB, Pérez AG, Luaces P, Montes-Borrego M, Navas-Cortés JA, Sanz C. 2019. Insights into the Effect of Verticillium dahliae Defoliating-Pathotype Infection on the Content of Phenolic and Volatile Compounds Related to the Sensory Properties of Virgin Olive Oil. Front. Plant Sci. 10, 1-12. https://doi.org/10.3389/fpls.2019.00232 PMid:30891053 PMCid:PMC6413673
Lukić I, Žanetić M, Jukić Špika M, Lukić M, Koprivnjak O, Brkić Bubola K. 2017. Complex interactive effects of ripening degree malaxation duration and temperature on Oblica cv. virgin olive oil phenols volatiles and sensory quality. Food Chem. 232, 610-620. https://doi.org/10.1016/j.foodchem.2017.04.047 PMid:28490119
Medina-Alonso MG, Navas J.F, Cabezas JM, Weiland CM, Ríos-Mesa D, Lorite IJ, León L, de la Rosa R. 2020. Differences on flowering phenology under Mediterranean and Subtropical environments for two representative olive cultivars. Environ. Exp. Bot. 180, 104239. https://doi.org/10.1016/j.envexpbot.2020.104239
Medina G, León L, Navas-Lopez JF, Santos C, Lorite IJ, de la Rosa R. 2018. La floración de Arbequina en condiciones climáticas subtropicales. Vida Rural Octubre, 52-56.
Medjkouh L, Tamendjari A, Alves C, Laribi R, Oliveira MBPP. 2018. Phenolic profiles of eight olive cultivars from Algeria: Effect of: Bactrocera oleae attack. Food Funct. 9, 890-897. https://doi.org/10.1039/C7FO01654A PMid:29299572
Miho H, Díez CM, Mena-Bravo A, Sánchez de Medina V, Moral J, Melliou E, Magiatis P, Rallo L, Barranco D, Priego-Capote F. 2018. Cultivar influence on variability in olive oil phenolic profiles determined through an extensive germplasm survey. Food Chem. 266, 192-199. https://doi.org/10.1016/j.foodchem.2018.06.002 PMid:30381176
Morelló JR, Romero MP, Motilva MJ. 2004. Effect of the maturation of the olive fruit on the phenolic fraction of drupes and oils from Arbequina Farga and Morrut cultivars. J. Agric. Food Chem. 52, 6002-6009. https://doi.org/10.1021/jf035300p PMid:15366855
Mousavi S, Stanzione V, Mencuccini M, Baldoni L, Bufacchi M, Mariotti R. 2019. Biochemical and molecular profiling of unknown olive genotypes from central Italy: determination of major and minor components. Eur. Food Res. Technol. 245, 83-94. https://doi.org/10.1007/s00217-018-3142-0
Navas-Lopez JF, León L, Trentacoste ER, de la Rosa R. 2019. Multi-environment evaluation of oil accumulation pattern parameters in olive. Plant Physiol. Biochem. 139, 485-494. https://doi.org/10.1016/j.plaphy.2019.04.016 PMid:31009882
Obied HK, Prenzler PD, Ryan D, Servili M, Taticchi A, Esposto S, Robards K. 2008. Biosynthesis and biotransformations of phenol-conjugated oleosidic secoiridoids from Olea europaea L. Nat. Prod. Rep. 25, 1167. https://doi.org/10.1039/b719736e PMid:19030607
Omar S, Kerr P, Scott C, Hamlin A, Obied H. 2017. Olive (Olea europaea L.) Biophenols: A Nutriceutical against Oxidative Stress in SH-SY5Y Cells. Molecules 22, 1858. https://doi.org/10.3390/molecules22111858 PMid:29109370 PMCid:PMC6150248
Ovar ÄST, Irona JOANG, Otilva ÄM, Paz Romero M, Tovar MJ, Girona J, Motilva M. 2002. Changes in the HPLC Phenolic Profile of Virgin Olive Oil from Young Trees (Olea europaea L. Cv. Arbequina) Grown under Different Deficit Irrigation Strategies. J. Agric. Food Chem. 50, 5349-5354. https://doi.org/10.1021/jf020357h PMid:12207473
Pérez AG, Leon L, Pascual M, Romero-Segura C, Sánchez-Ortiz A, de la Rosa R, Sanz C. 2014. Variability of virgin olive oil phenolic compounds in a segregating progeny from a single cross in Olea europaea L. and sensory and nutritional quality implications. PLoS One 9, e92898-e92898. https://doi.org/10.1371/journal.pone.0092898 PMid:24651694 PMCid:PMC3961445
Pérez AG, León L, Sanz C, de la Rosa R. 2018. Fruit Phenolic Profiling: A New Selection Criterion in Olive Breeding Programs. Front. Plant Sci. 9, 1-14. https://doi.org/10.3389/fpls.2018.00241 PMid:29535752 PMCid:PMC5835234
Piroddi M, Albini A, Fabiani R, Giovannelli L, Luceri C, Natella F, Rosignoli P, Rossi T, Taticchi A, Servili M, Galli F. 2017. Nutrigenomics of extra-virgin olive oil: A review. BioFactors 43, 17-41. https://doi.org/10.1002/biof.1318 PMid:27580701
El Riachy M, Priego-Capote F, Rallo L, Luque-de Castro MD, León L. 2013. Phenolic composition of virgin olive oils in cultivars for narrow hedgerow olive orchards. Eur. J. Lipid Sci. Technol. 115, 800-810. https://doi.org/10.1002/ejlt.201300001
El Riachy M, Bou-Mitri C, Youssef A, Andary R, Skaff W. 2018. Chemical and Sensorial Characteristics of Olive Oil Produced from the Lebanese Olive Variety 'Baladi.' Sustainability 10, 4630. https://doi.org/10.3390/su10124630
Río C, Romero AM. 1999. Whole Unmilled Olives Can Be Used to Determine their Oil Content by Nuclear Magnetic Resonance. Hort. Technol. 9, 675-680. https://doi.org/10.21273/HORTTECH.9.4.675
Sánchez de Medina V, Calderón-Santiago M, El Riachy M, Priego-Capote F, Luque de Castro MD. 2014. High-resolution mass spectrometry to evaluate the influence of cross-breeding segregating populations on the phenolic profile of virgin olive oils. J. Sci. Food Agric. 94, 3100-3109. https://doi.org/10.1002/jsfa.6653 PMid:24633600
Serreli G, Deiana M. 2019. In vivo formed metabolites of polyphenols and their biological efficacy. Food Funct. 10, 6999-7021. https://doi.org/10.1039/C9FO01733J PMid:31659360
Servili M, Montedoro GF. 2002. Contribution of phenolic compounds to virgin olive oil quality. Eur. J. Lipid Sci. Technol. 104, 602-613. https://doi.org/10.1002/1438-9312(200210)104:9/10<602::AID-EJLT602>3.0.CO;2-X
Talhaoui N, Gómez-Caravaca AM, León L, De La Rosa R, Fernández-Gutiérrez A, Segura-Carretero A. 2015. Pattern of Variation of Fruit Traits and Phenol Content in Olive Fruits from Six Different Cultivars. J. Agric. Food Chem. 63, 10466-10476. https://doi.org/10.1021/acs.jafc.5b04315 PMid:26509962
Valente S, Machado B, Pinto DCGA, Santos C, Silva AMS, Dias MC. 2020. Modulation of phenolic and lipophilic compounds of olive fruits in response to combined drought and heat. Food Chem. 329, 127191 https://doi.org/10.1016/j.foodchem.2020.127191 PMid:32505985
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.
Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Consulte la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.
Datos de los fondos
European Regional Development Fund
Números de la subvención AVA201601.2;AVA2019.027;TRA201600.2;TRA2019.010
Ministerio de Economía y Competitividad
Números de la subvención AGL2015-67652