La suplementación de ratas hembras con DHA-lisofosfatidilcolina aumenta el contenido de ácido docosahexaenoico y de acetilcolina cerebral y mejora la capacidad de aprendizaje y de memorización de las crías
DOI:
https://doi.org/10.3989/gya.053709Palabras clave:
Acetilcolina cerebral, Colina, Lisofosfolípidos, Suplementación con DHA, Test de SkinnerResumen
El ácido docosahexaenoico (DHA) que requiere el feto y el recién nacido lo aporta la madre desde sus reservas y la dieta, por lo cual se sugiere suplementar a la madre con DHA. No hay consenso sobre la mejor forma de suplementación. Proponemos que un lisofosfolípido que contiene DHA y colina (DHA-LPC) obtenido de huevos con alto contenido de DHA es adecuado para suplementar DHA y colina, precursora de la acetilcolina. Se evaluó la efectividad de DHA-LPC para incrementar el DHA y la acetilcolina cerebral de crías de ratas suplementadas con DHA-LPC antes y durante la gestación, y en la capacidad de aprendizaje y memorización de las crías mediante el test de condicionamiento operante de Skinner. Ratas Wistar hembras fueron suplementadas con DHA-LPC (8 mg DHA/kg/día) 40 días antes y durante la preñez. Después del parto se analizó DHA en plasma, eritrocitos, hígado y tejido adiposo, y colina plasmática. A las crías de 60 días se les separó: corteza frontal, cerebelo, striatum, hipocampo y corteza occipital y se les analizó DHA, acetilcolina y la actividad de acetilcolina transferasa (CAT). Las crías fueron sometidas al test de Skinner. La suplementación con DHA-LPC aumenta la colina plasmática y el DHA hepático en las madres y el DHA y la acetilcolina del cerebelo e hipocampo en las crías. La actividad CAT no se modifica. Las crías de madres suplementadas con DHA-LPC mostraron puntajes de memorización y aprendizaje superior que las controles. Conclusión: el aporte de DHA y colina como DHA-LPC puede constituir una nueva forma para proveer suplementación prenatal con DHA.
Descargas
Citas
Auld D, Menniken F, Day J, Quirion R. 2001. Neurothrofins differentially enhance acetylcholine release, acetylcholine content and choline acetyltransferase activity in basal forebrain neurons. J. Neurochem. 77, 253-258. PMid:11279281
Bakker EC, Ghys A J, Kester AD, Vies JS, Blanco CE, Hornstra G. 2003. Long-chain polyunsaturated fatty acids at birth and cognitive function at 7 years of age. Eur. J. Clin. Nutr. 57, 89-95. doi:10.1038/sj.ejcn.1601506 PMid:12548302
Carlson S, Neuringer M. 1999. Polyunsaturated fatty acid status and neurodevelopment: a summary and critical analysis of the literature. Lipids 34, 171-178. doi:10.1007/s11745-999-0351-2 PMid:10102243
Carrié I, Guesnet P, Bourre JM, Francés H. 2000. Diets containing long-chain polyunsaturated fatty acids affect behaviour differently during development than ageing mice. Brit. J. Nutr. 83, 439-447.
Carrié I, Smirnova N, Clément M, De Javel D, Francés H, Bourre JM. 2002. Docosahexaenoic acid-rich phospholipid supplementation: effect on behaviour, learning ability, and retinal function in control and n-3 polyunsaturated acid deficient old mice. Nutr. Neurosci. 5, 43-52. doi:10.1080/10284150290007074
Chung SY, Moriyama T, Uezu E, Uezu K, Hirata R, Yohena N, Masuda Y, Kokubu T, Yamamoto S. 1995. Administration of phosphatidylcholine increases brain acetylcholine concentration and improves memory in mice with dementia. J. Nutr. 125, 1484-1489. PMid:7782901
Clandinin T. 1999. Brain development and assessing the supply of polyunsaturated fatty acids. Lipids 34, 131-137. doi:10.1007/s11745-999-0347-y PMid:10102239
Craciunescu C, Albright C, Mar MH, Song J, Zeisel S. 2003. Choline availability during embryonic development alter progenitor cell mitosis in developing mouse hippocampus. J. Nutr. 133, 3614-3618. PMid:14608083 PMCid:1592525
Crawford M. 2000. Placental delivery of arachidonic and docosahexaenoic acids: implications for the lipid nutrition of preterm infants. Am. J. Clin. Nutr. 71 (suppl) 275S-284S. PMid:10617983
Das UN. 2003. Long-chain polyunsaturated fatty acids in memory formation and consolidation: further evidence and discussion. Nutrition 19, 988-993. doi:10.1016/S0899-9007(03)00174-6
Duck-Chong CG. 1979. A rapid sensitive method for determining phospholipids phosphorus involving the digestion of magnesium. Lipids 14, 492-497. doi:10.1007/BF02533467
Duncan DB. 1957. Multiple range test for correlated heterocedastics means. Biometrics 13, 164-176. doi:10.2307/2527799
Dutta-Roy AK. 2000. Transport mechanism for long-chain polyunsaturated fatty acids in the human placenta. Am. J. Clin. Nutr. 71, 315S-322S. PMid:10617989
Everett B J, Robbins TW. 1997. Central cholinergic system and cognition. Annu. Rev. Psychol. 48, 649-681. doi:10.1146/annurev.psych.48.1.649 PMid:9046571
Favreliere S, Perault MC, Huguet F, De Javel D, Bertrand N, Piriod A, Durand G. 2003. DHA-enriched phospholipids diets modulate age-related alterations in rat hippocampus. Neurobiol. Aging. 24, 2333-2343. doi:10.1016/S0197-4580(02)00064-7
Folch J, Lees M, Sloane-Stanley GH. 1957. A simple method for the isolation and purification of lipids from animal tissues. J. Biol. Chem. 22, 497-509.
Garg ML, Wood LG, Mougham P. 2006. Means of delivering recommended levels of long chain n-3 polyunsaturated fatty acids in human diets. J. Food Sci. 71, R66-R71. doi:10.1111/j.1750-3841.2006.00033.x
Helland IB, Smith L, Saarem K, Saugstad OD, Drevon CA. 2003. Maternal supplementation with very-longchain n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age. Pediatrics 111, e39-e44. doi:10.1542/peds.111.1.e39 PMid:12509593
Holub BJ. 1978. Differential utilization of 1-palmitoyl and 1-stearoyl homologues of various unsaturated 1,2-diacyl-sn-glycerols for phosphatidylcholine and phosphatidylethanolamine synthesis in rat liver microsomes. J. Biol. Chem. 253, 691-696. PMid:202595
Innis SM, De la Presa S. 2001. Dietary fatty acid composition in pregnancy alters neurite membrane fatty acids and dopamine in newborn rat brain. J. Nutr. 131, 118-122. PMid:11208947
Innis SM. 2004. Polyunsaturated fatty acids in human milk: an essential role in infant development. Adv. Exp, Med. Biol. 554, 27-43. PMid:15384565
Innis SM. 2007. Human milk: maternal dietary lipids and infant development. Prod. Nutr. Soc. 66, 397-404. doi:10.1017/S0029665107005666 PMid:17637092
Jensen RG. 1999. Lipids in human milk. Lipids 34, 1243-1271. doi:10.1007/s11745-999-0477-2 PMid:10652985
Jonasson Z. 2005. Meta-analysis of sex differences in rodent models of learning and memory: a review of behavioral and biological data. Neurosci. Beaviour. Rev. 28, 811-825. doi:10.1016/j.neubiorev.2004.10.006 PMid:15642623
Jones J, Meck W, Williams W, Wilson W, Swartzwelder H. 1999. Choline availability to the developing rat fetus alters adult hippocampal long-term potentiation. Brain Res. Dev. 118, 159-167. doi:10.1016/S0165-3806(99)00103-0
Judge M, Harel O, Lammi-Keefe C. 2007. Maternal consumption of docosahexaenoic acid-containing functional foods during pregnancy: benefit for infant performance on problem-solving but not on recognition memory tasks at age 9 mo. Am. J. Clin. Nutr. 85, 1572-1577. PMid:17556695
Koo W. 2003. Efficacy and safety of docosahexaenoic acid and arachidonic acid addition to infant formulas: can one buy better vision and intelligence? Am. J. Coll. Nutr. 22, 101-107.
Kritchevsky D. 1995. Fatty acids, triglyceride structure, and lipid metabolism. Nutr. Biochem. 6, 172-178. doi:10.1016/0955-2863(95)00030-4
Lethwood P D, Heck E, Mauron J. 1982. Phosphatidylcholine and avoidance performance in 17 month-old SEC/IReJ mice. Life Science 30, 1065-1071. doi:10.1016/0024-3205(82)90526-4
Lagarde M, Bernoud N, Brossard N, Lemaitre-Delaunay D, Thiés F, Croset M, Lecerf J. 2001. Lysophosphatidylcholine as a preferred carrier form of docosahexaenoic acid to the brain. J. Mol. Neurosci. 16, 201-205. doi:10.1385/JMN:16:2-3:201
Lemaitre-Delaunay D, Pachiaudi C, Laville M, Pousin J, Armstrong M, Lagarde M. 1999. Blood compartmental metabolism of docosahexaenoic acid (DHA) in humans after ingestion of a single dose of [(13)C]DHA in phosphatidylcholine. J. Lipid Res. 40, 1867-1874. PMid:10508206
Lim SY, Suzuki H. 2000. Intakes of dietary docosahexaenoic acid ethyl-ester and egg phosphatidylcholine improve maze-learning ability in young and old mice. J. Nutr. 130, 1629-1632. PMid:10827221
López I, Agut J, Ortiz A, Wurtman R. 1992. Effects of orally administered cytidine 5’- diphosphatecholine on brain phospholipid content. J. Nutr. Biochem. 3, 313-315. doi:10.1016/0955-2863(92)90039-L
Loy R, Heyer D, Williamd C, Meck WH. 1991. Cholineinduced spatial memory facilitation correlates with altered distribution and morphology of septal neurons. Adv. Exp. Med. Biol. 295, 373-382. PMid:1776578
Marszalek J R, Lodish HF. 2005. Docosahexaenoic acid, fatty acid-interacting proteins, and neuronal function: breast milk and fish are good for you. Annu. Rev. Cell. Dev. Biol. 21, 633-657. doi:10.1146/annurev.cellbio.21.122303.120624 PMid:16212510
Martin RE, Bazan NG. 1992. Changing fatty acid content of growth cone lipids prior to synaptogenesis. J. Neurochem. 59, 318-325. doi:10.1111/j.1471-4159.1992.tb08906.x PMid:1613507
Massaro TF, Widmayer P. 1981. The effect of iron deficiency on cognitive performance in the rat. Am. J. Clin. Nutr. 34, 864-870. PMid:7234716
NEMO Group Study. 2007. Effect of a 12-mo micronutrient intervention on learning and memory in well-nourished and marginally nourished school-aged children: 2 parallel randomized, placebo-controlled studies in Australia and Indonesia. Am. J. Clin. Nutr. 86, 1082-1093.
Minami M, Kimura S, Endo T, Hamaue N, Hirafuji M, Togashi H, Matsumoto M, Yoshioka M, Saito H, Watanabe S, Kobayashi T, Okuyama H. 1997. Dietary docosahexaenoic acid increases cerebral acetylcholine levels and improves passive avoidance performance in stroke-prone spontaneous hypertensive rats. Pharmacol. Biochem. Behav. 58, 1123-1129. doi:10.1016/S0091-3057(97)00300-6
Moriguchi T, Greiner R, Salem N. 2000. Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration. J. Neurochemistry 75, 2563-2573. doi:10.1046/j.1471-4159.2000.0752563.x PMid:11080210
Morrison W, Smith LM. 1964. Preparation of fatty acid methyl esters and dimethyl acetals form lipids with boron fluoride-methanol. J. Lipid Res. 25, 600-608.
Nieto S, Gutiérrez J, Sanhueza J, Valenzuela A. 1999. Preparation of sn-2 long-chain polyunsaturated monoacylglycerols from fish oil by hydrolysis with a stereo-specific lipase from Mucor miehei. Grasas & Aceites 50, 111-113.
Ozarda Y, Gurun MS, Taga Y, Ulus I. 2003. Choline increases serum insulin in rat when injected intraperitoneally and augment basal and stimulated acetylcholine release from the rat minced pancreas in vitro. Eur. J. Biochem. 270, 991-997. doi:10.1046/j.1432-1033.2003.03472.x PMid:12603332
Ragozzino M E, Unik KE, Gold PE. 1996. Hippocampal acetylcholine release during memory testing in rats: augmentation by glucose. Proc. Natl. Acad. Sci. 16, 243-261.
Salem N, Litman B, Kim HY, Gawrish K. 2001. Mechanism of action of docosahexaenoic acid in the nervous system. Lipids 36, 945-959. doi:10.1007/s11745-001-0805-6 PMid:11724467
Simolopulos AP. 2002. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 56, 365-379. doi:10.1016/S0753-3322(02)00253-6
Simopoulos A, Leaf A, Salem N. 1999. Essentially and recommended dietary intakes for omega-6 and omega-3 fatty acids. Ann. Nutr. Metab. 43, 127-130. doi:10.1159/000012777 PMid:10436312
Smith, J., Vaughn, T., Co, C. (2004). Acetylcholine turnover rates in rat brain regions during cocaine selfadministration. J. Neurochem. 88, 502-512. PMid:14690538
Sonada, H., Aoki, J., Hiramatsu, T., Isgida, M., Bandoh, K., Nagai, Y. (2002). A novel phosphatidic acid-selective phospholipase A1 that produced lysophosphatidic acid. J. Biol. Chem. 277, 34254-34263. doi:10.1074/jbc.M201659200 PMid:12063250
Sloan, H., Dobrossy, M., Dunnett, S. B. (2006). Hippocampal lesion impairs performance on a conditional delayed matching and non-matching to position task in the rat. Behav. Brain Res. 171, 240-250. doi:10.1016/j.bbr.2006.03.042 PMid:16697059
Spencer GE, Klumperman J, Syed NI. 1998. Neurotransmitter and neurodevelopment. Role of dopamine and acetylcholine in neurite outgrowth, target selection and specific synapse formation. Perspect. Dev. Neurobiol. 5, 451-467. PMid:10533531
Staddon JE, Cerutti DT. 2003. Operant conditioning. Annu. Rev. Psychol. 54, 115-144. doi:10.1146/annurev.psych.54.101601.145124 PMid:12415075 PMCid:1473025
Suzuki H, Manabe S, Wada O, Crawford MA. 1997. Rapid incorporation of docosahexaenoic acid from dietary sources into brain microsomal, synaptosomal and mitochondrial membranes in adult mice. Int. J. Vit. Res. 67, 272-278.
Suzuki S, Yamatoya H, Sakai M, Kataoka A, Furushiro M, Kudo S. 2001. Oral administration of soybean lecithin transphosphatidylated phosphatidylserine improves memory impairment in aged rats. J. Nutr. 131, 2951-2958. PMid:11694624
Thiés F, Delachambre MC, Bentejac M, Lagarde M, Lecerf J. 1992. Unsaturated fatty acids esterified in 2-acyl-1-lysophosphatidylcholine bound to albumin are more efficiently taken up by the young rat brain than the unesterified form. J Neurochem. 59, 1110-1116. doi:10.1111/j.1471-4159.1992.tb08353.x
Tikhonrarov DL. 2000. Involvement of the parafascicular nucleus of the thalamus and the cholinoreactive systems of the neostriatum in controlling a foodprocuring reflex in rats at different stages of learning. Neurosci. Behav. Physiol. 30, 391-398. doi:10.1007/BF02463092 PMid:10981941
Valenzuela A, von Bernhardi R, Valenzuela V, Ramírez G, Alarcón R, Sanhueza J, Nieto S. 2004. Supplementation of female rats with alpha-linolenic acid or docosahexaenoic acid leads to the same omega-6/omega-3 LC-PUFA accretion in mother tissues and newborn brains. Ann. Nutr. Metab. 48, 28-35. doi:10.1159/000075082 PMid:14639043
Valenzuela A, Nieto S, Sanhueza J, Núñez MJ, Ferrer C. 2005. Tissue accretion and milk content of docosahexaenoic acid (DHA) in female rats after supplementation with different sources of DHA. Ann. Nutr. Metab. 49, 325-332. doi:10.1159/000087337 PMid:16088098
Valenzuela A, Sanhueza J, Nieto S. 2006. Docosahexaenoic acid (DHA), essentiality and requirements: why and how to provide supplementation. Grasas & Aceites, 57, 229-237. doi:10.3989/gya.2006.v57.i2.43
Valenzuela A. 2009. Docosahexaenoic acid (DHA), an essential fatty acid for the proper functioning of neuronal: their role in mood disorders. Grasas & Aceites, 60, 203-212. doi:10.3989/gya.085208
Wainwright P. 2002. Dietary essential fatty acids and brain function: a developmental perspective on mechanism. Proc. Nutr. Soc. 61, 61-69. doi:10.1079/PNS2001130 PMid:12002796
Weiss ER, Maness PA, Lauder JM. 1998. Why do neurotransmitters act like growth factores? Perspect. Dev. Neurobiol. 5, 323-335. PMid:10533523
Watkins B, Li Y, Allen K, Hoffmann W, Seifert M. 2000. Dietary ratio of n-6 and n-3 polyunsaturated fatty acids alters the fatty acid composition of bone compartments and biomarkers of bone formation in the rat. J. Nutr. 130, 2274-2278. PMid:10958824
Willatts P, Forsyth J, DiModugno M, Varma S, Colvon M. 1998. Effect of long-chain polyunsaturated fatty acids in infant formula on problem solving at 10 month of age. Lancet, 352, 688-691. doi:10.1016/S0140-6736(97)11374-5
Zeisel S. 2000. Choline: an essential nutrient for human. Nutrition 16, 669-671. doi:10.1016/S0899-9007(00)00349-X
Zeisel S. 2006. Choline: critical role during fetal development and dietary requirements in adults. Annu. Rev. Nutr. 26, 229-250. doi:10.1146/annurev.nutr.26.061505.111156 PMid:16848706 PMCid:2441939
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2010 Consejo Superior de Investigaciones Científicas (CSIC)

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
© CSIC. Los originales publicados en las ediciones impresa y electrónica de esta Revista son propiedad del Consejo Superior de Investigaciones Científicas, siendo necesario citar la procedencia en cualquier reproducción parcial o total.Salvo indicación contraria, todos los contenidos de la edición electrónica se distribuyen bajo una licencia de uso y distribución “Creative Commons Reconocimiento 4.0 Internacional ” (CC BY 4.0). Puede consultar desde aquí la versión informativa y el texto legal de la licencia. Esta circunstancia ha de hacerse constar expresamente de esta forma cuando sea necesario.
No se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.