Evolution of oxidation in soybean oil and its biodiesel under the conditions of the oxidation stability test
DOI:
https://doi.org/10.3989/gya.036913Keywords:
Acid value, Anisidine value, Biodiesel, Oxidation, Peroxide value, Polar compounds, Soybean oil, Tocopherols, ViscosityAbstract
The objective of this study was to know the evolution of the oxidation of soybean oil and biodiesel under the conditions of the oxidation stability test (110 °C) using the Rancimat apparatus. Samples were analyzed at different periods of time until the end of the induction period. The analytical determinations related to the changes in oxidation include peroxide value, anisidine value, natural tocopherols and polar compounds. Acid value, kinematic viscosity, polymers and ester content were also analyzed because of their relevance in the evaluation of biodiesel quality. Results showed that only peroxide value and the group of polar compounds including hydroperoxides, i.e. oxidized monomeric TAG in the oil and oxidized monomeric FAME in the biodiesel increased significantly during the early oxidation stage. The end of the induction period was marked by a rapid increase in polymerization compounds and the exhaustion of tocopherols. Significant changes in acid value, viscosity and ester content were only observed after the end of the induction period.
Downloads
References
AOCS. 1997. Official methods and recommended practices of the American Oil Chemists' Society, 5th ed. AOCS, Champaign, IL.
Barrera-Arellano D, Ruiz-Méndez MV, Márquez-Ruiz G, Dobarganes MC. 1999. Loss of tocopherols and formation of degradation compounds in triacylglycerol model systems heated at high temperature. J. Sci. Food Agric. 79, 1923-1928. http://dx.doi.org/10.1002/(SICI)1097-0010(199910)79:13<1923::AID-JSFA457>3.0.CO;2-8
Barrera-Arellano D, Ruiz-Méndez MV, Velasco J, Márquez-Ruiz G, Dobarganes MC. 2002. Loss of tocopherols and formation of degradation compounds at frying temperatures in oils differing in unsaturation degree and natural antioxidant content. J. Sci. Food Agric. 82, 1696-1702. http://dx.doi.org/10.1002/jsfa.1245
CEN. 1999. EUROPEAN COMMITTEE FOR STANDARDIZATION. Method EN 3104. Liquid petroleum products - Determination of kinematic viscosity and calculation of dynamic viscosity. Brussels, Belgium, 1999.
CEN. 2003a. EUROPEAN COMMITTEE FOR STANDARDIZATION. Method EN 14104. Fatty acid methyl esters (FAME) - Determination of acid value. Brussels, Belgium.
CEN. 2003b. EUROPEAN COMMITTEE FOR STANDARDIZATION. Method EN 14103. Fatty acid methyl esters (FAME) - Determination of ester and linolenic acid methyl ester contents. Brussels, Belgium.
CEN. 2003c. EUROPEAN COMMITTEE FOR STANDARDIZATION. Method EN 14112. Fatty acid methyl esters (FAME) - Determination of oxidation stability. Brussels, Belgium, 2003
CEN. 2003d. EUROPEAN COMMITTEE FOR STANDARDIZATION. Method EN14105. Fatty acid methyl esters (FAME) - Determination of free and total glycerol and mono-, di-, triglyceride contents. Brussels, Belgium, 2003.
Choe E, Min DB. 2006. Mechanisms and Factors for Edible Oil Oxidation. Rev. Food Sci. F. 5, 169-186. http://dx.doi.org/10.1111/j.1541-4337.2006.00009.x
Dobarganes MC, Pérez-Camino MC, Gutiérrez González- Quijano R. 1984. Métodos analíticos de aplicación en grasas calentadas. I. Determinación de ésteres metílicos no alterados. Grasas Aceites 35, 172-177.
Dobarganes MC, Velasco J, Dieffenbacher A. 2000. The determination of polar compounds, polymerised triacylglycerols, oxidised triacylglycerols and diacylglycerols in fats and oils. Pure Appl. Chem. 72, 1563-1575. http://dx.doi.org/10.1351/pac200072081563
Dunn RO. 2002. Effect of oxidation under accelerated conditions on fuel properties of methyl soyate (biodiesel). J. Am.Oil Chem. Soc. 79, 915-920. http://dx.doi.org/10.1007/s11746-002-0579-2
Frankel EN. 2005. Methods to determine the extent of oxidation, in Frankel EN (Ed). Lipid Oxidation, 2nd ed, vol. 18. The Oily Press, Bridgwater, 99-127.
Holman RT, Elmer OC. 1947. The rates of oxidation of unsaturated fatty acids and esters. J. Am. Oil Chem. Soc. 24, 127-129. http://dx.doi.org/10.1007/BF02643258
IUPAC. 1992. Standard Methods for the Analysis of Oils, Fats and Derivatives, 7th ed. International Union of Pure and Applied Chemistry, Blackwell Scientific, Oxford, UK.
Kamal-Eldin A, Appleqvist LA. 1996. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31, 671-699. http://dx.doi.org/10.1007/BF02522884 PMid:8827691
Knothe G. 2007. Some aspects of biodiesel oxidative stability. Fuel Process. Technol. 88, 669-677. http://dx.doi.org/10.1016/j.fuproc.2007.01.005
Lacoste F, Lagardere, L. 2003. Quality parameters evolution during biodiesel oxidation using Rancimat test. Eur. J. Lipid Sci. Technol. 105,149-155 http://dx.doi.org/10.1002/ejlt.200390030
Lampi AM, Kamal-Eldin A. 1998. Effect of a- and gtocopherols on thermal polymerization of purified high-oleic sunflower triacylglycerols. J. Am. Oil Chem. Soc. 75, 1699-1703. http://dx.doi.org/10.1007/s11746-998-0319-x
Lampi AM, Kataja L, Kamal-Eldin A, Vieno P. 1999. Antioxidant activities of α- and γ-tocopherols in the oxidation of rapeseed oil triacylglycerols. J. Am. Oil Chem. Soc. 76, 749-755. http://dx.doi.org/10.1007/s11746-999-0171-7
Marmesat S, Velasco L, Ruiz-Méndez MV, Fernández-Martínez JM, Dobarganes MC. 2008. Thermostability of genetically modified sunflower oils differing in fatty acid and tocopherol compositions. Eur. J. Lipid Sci. Technol. 110, 776-782. http://dx.doi.org/10.1002/ejlt.200800040
Márquez Ruiz G, Pérez-Camino MC, Dobarganes MC. 1990. Combination of adsorption and size-exclusion chromatography for the determination of fatty acid monomers, dimers and polymers. J. Chromatogr. 514, 37-44. http://dx.doi.org/10.1016/S0021-9673(01)89374-2
Márquez-Ruiz G, Martín-Polvillo M, Dobarganes MC. 1996. Quantitation of oxidized triglyceride monomers and dimers as an useful measurement for early and advanced stages of oxidation. Grasas Aceites 47, 48-53. http://dx.doi.org/10.3989/gya.1996.v47.i1-2.842
Martín Polvillo M, Márquez-Ruiz G, Dobarganes MC. 2004. Oxidative stability of sunflower oils differing in unsaturation degree during long-term storage at room temperature. J. Am. Oil Chem. Soc. 81, 577-583. http://dx.doi.org/10.1007/s11746-006-0944-1
Miyashita K, Takagi T. 1986. Study on the oxidative rate and prooxidant activity of free fatty acids. J. Am. Oil Chem. Soc.63, 1380-1384. http://dx.doi.org/10.1007/BF02679607
Pighinelli ALMT, Ferrari RA, Miguel AMRO, Park KJ. 2011. High oleic sunflower biodiesel: quality control and different purification methods. Grasas Aceites 62, 171-180 http://dx.doi.org/10.3989/gya.067010
Pullen J, Saeed K. 2012. An overview of biodiesel oxidation stability. Renew. Sust Energy Rev. 16, 5924-5950. http://dx.doi.org/10.1016/j.rser.2012.06.024
Rashid U, Ibrahim M, Ali S, Adil M, Hina S, Bukhari LH, Yunus R. 2012. Comparative study of the methanolysis and ethanolysis of maize oil using alkaline catalysts. Grasas Aceites 63, 35-43. http://dx.doi.org/10.3989/gya.06891
Siddharth J, Sharma MP. 2011. Thermal stability of biodiesel and its blends: A review. Renew. Sust Energy Rev. 15, 438-448. http://dx.doi.org/10.1016/j.rser.2010.08.022
Tomasevic AV, Siler-Marinkovic SS. 2003. Methanolysis of used frying oil. Fuel Process. Technol. 81, 1-6. http://dx.doi.org/10.1016/S0378-3820(02)00096-6
Yoshida H, Hirooka N, Kajimoto G. 1991. Microwave heating effects on relative stabilities of tocopherols in oils. J. Am. Oil Chem. Soc. 56, 1042-1046.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2013 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
© CSIC. Manuscripts published in both the print and online versions of this journal are the property of the Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
All contents of this electronic edition, except where otherwise noted, are distributed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence. You may read here the basic information and the legal text of the licence. The indication of the CC BY 4.0 licence must be expressly stated in this way when necessary.
Self-archiving in repositories, personal webpages or similar, of any version other than the final version of the work produced by the publisher, is not allowed.