Geographic variation in fatty acid composition and food source of the commercial clam (Venerupis decussata, Linnaeus, 1758), from the Tunisian Coast: Trophic links

Authors

DOI:

https://doi.org/10.3989/gya.0580181

Keywords:

Estuary and coastal lagoons, Fatty acid composition, Multivariate analysis, Trophic links, Tunisian waters, Venerupis decussata

Abstract


Lake and coastal Tunisian areas are rich biodiversity habitats, although little information is available about the distribution of food sources for the inhabitant species. In this study, a fatty acid analysis was used to study the trophic ecology of Venerupis decussatac ommunities from 10 sites located along the Tunisian Coast. The richest population in fatty acids was found in S4 followed by S5 and S8, while that of S1, S3 and S10 were the least rich. Results from multivariate analysis confirmed the ecological position of the studied population based on their fatty acid composition. Our results divided the ten studied populations into three similar groups according to their ecological and geographical positions in relation to environmental parameters and food and trophic links. A principal component analysis revealed that diatoms and dinoflagellates were the predominate diets in all the sampling stations. Bacteria and urban discharge dominated the dietary source of clams from S10 and S9. Zooplankton were the preferred diet of V. decussata harvested from the two S2 and S3 lakes; although green algae, phytoplankton and detritus were absent from the dietary source of the two previous populations. Despite spatial differences, clams from the north and the south could be easily distinguished from each other, which indicates the utility of this method in the dietary analysis of different food chain links. This study proves that geographic, ecologic and abiotic factors as well as their mutual interaction should be properly investigated in studies focusing on the trophic chains of aquatic ecosystems.

Downloads

Download data is not yet available.

References

Aissaoui A, Turki S, Ben Hassine OK. 2012. Occurrence of harmful dinoflagellates in the Punic harbors of Carthage Gulf of Tunis and their correlations with the physicochemical parameters. Bull. Instit. Nati. Scien. Techn. Mer 39, 127–148. ISSN:0330-0080.

Albergamo A, Rigano F, Purcaro G, Mauceri A, Fasulo S,Mondello L. 2016. Free fatty acid profiling of marine sentinels by nanoLC-EI-MS for the assessment of environmental pollution effects. Sci. Total Environ. 571, 955–962. https://doi.org/10.1016/j.scitotenv.2016.07.082 PMid:27453141

Alfaro AC. 2006. Evidence of cannibalism and bentho-pelagic coupling within the life cycle of the mussel, Perna canaliculus. J. Exp. Mar. Biol. Ecol. 329, 206–217. https://doi.org/10.1016/j.jembe.2005.09.002

Aminot A, Chaussepied C. 1983. Manuel des analyses chimiques en milieu marin. In Brest CNEXO ed. Centre national d'exploitation des océans, France, 400p.

Auel H, Harjes M, De Rocha R, Stübing D, Hagen W. 2002. Lipid biomarkers indicate different ecological niches and trophic relationships of the Arctic hyperiid amphipods Themisto abyssorum and Themisto libellula. Pol. Bio. 25, 374–383.

Bejaoui S, Boussoufa D, Tir M, Gharsallah-Houas I, Ghram A, El Cafsi M, Soudani N. 2017. DNA damage and oxidative stress in digestive gland of Venerupis decussata, collected from two contrasting habitats in the southern Tunisian coast: Biochemical and histopathological studies. Cah. Bio. Mar. 58, 123–135.

Ben Lamine Y, Daly YKO, Daly YN. 2012. Planktonic copepod community in the nertic area south western part of Tunis bay influenced by Meliane river supplies (South western Mediterranean Sea). Bull. Instit National. Scien. Techno. Mer. 39, 141–147. ISSN 330–80.

Boussoufa D, Ghazali N, Viciano E, Navarro JC, EL Cafsi M. 2011. Seasonal variation in condition and fatty acid composition of coquina clam, Donax trunculus (Linnaeus 1758) (Mollusca: Bivalvia) from the Tunisian coast. Cah. Bio. Mar. 52, 47–56.

Budge SM, Prrish CC, Mckenzie CH. 2001. Fatty acid composition of phytoplankton, settling particulate matter and sediments at a sheltered bivalves aquaculture site. Mar. Chem. 76, 285–303. https://doi.org/10.1016/S0304-4203(01)00068-8

Budge SM, Iverson SJ, Koopman HN. 2006. Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation. Mar. Mamm. Sci. 22, 759–801. https://doi.org/10.1111/j.1748-7692.2006.00079.x

Capillo G, Silvestro S, Sanfilippo M, Fiorino E,Giangrosso G, Ferrantelli V, Vazzana I, Faggio C. 2018. Assessment of Electrolytes and Metals Profile of the Faro Lake (Capo Peloro Lagoon, Sicily, Italy) and Its Impact on Mytilus galloprovincialis. Chem. Biodivers. 15, e1800 D44. https://doi.org/10.1002/cbdv.201800044

Chalghmi H, Bourdineaud JP, Haouas Z, Gourves PY, Zrafi I, Saidane-Mosbahi D. 2014. Transcriptomic, Biochemical, and Histopathological Responses of the Clam Ruditapes decussatus from a Metal-Contaminated Tunis Lagoon. Arch. Environ. Contam. Toxicol. 70, 241–56. https://doi.org/10.1007/s00244-015-0185-0 PMid:26077924

Cecchi G, Basini S, Castano C. 1985. Méthanolyse rapide des huiles en solvant. R. Franç. Corps Gras 4.

Chérif W, El Bour M, Daly YKO. 2011. Screening de l'activité anti microfouling d'algues verts récoltées sur la côte nord Tunisienne. Bull. Instit. Nat. Sci. Techn. Mer. 38, 131–138. ISSN 0330-0080.

Costa R, Albergamo A, Piparo M, Zaccone G, Capillo G, Manganaro A, Mondello L. 2017. Multidimensional gas chromatographic techniques applied to the analysis of lipids from wild-caught and farmed marine species. Eur. J. Lipid. Sci. Technol. 119, 1600043. https://doi.org/10.1002/ejlt.201600043

Dalsgaard J, John M, Kattner G, Muller-Navarra D, Hagen W. 2003. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46, 225–340. https://doi.org/10.1016/S0065-2881(03)46005-7

Desvilettes CH, Bourdier G, Amblard CH,Barth B. 1997a. Use of fatty acids for the assessment of zooplankton grazing on bacteria, protozoans and microalgae. Fresh. Water. Biol. 38, 629–637. https://doi.org/10.1046/j.1365-2427.1997.00241.x

Fanelli E, Papiol V, Cartes JE, Rumolo P, Lopez-Pèrez C. 2013. Trophic webs of deep megafauna on mainland and insular slopes of the NW Mediterranean: a comparision by stable isotope analysis. Mar. Ecol. Prog. Ser. 490, 199–221. https://doi.org/10.3354/meps10430

Fernandez-Jover D, Jimenez JAL, Sanchez-Jerez P, Bayle-Sempere J, Casalduero FG, Lopez FJM, Dempster T. 2007. Changes in body condition and fatty acid composition of wild Mediterranean horse mackerel (Trachurus mediterraneus, Steindachner, 1868) associated to sea cage fish farms. Mar. Environ. Res. 63, 1–18. https://doi.org/10.1016/j.marenvres.2006.05.002

Feki W, Hamza A, Bel Hassen M, Rebai A. 2008. Les efflorescences phytoplanctoniques dans le golfe de gabes (Tunisie) au cours de dix ans de surveillance (1995-2005). Institut National des Sciences et Technologies de la Mer 35, 105–116.

Folch J, Lees M, Stanley GHS. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509. PMid:13428781

Gomes T, Albergamo A, Costa R, Mondello L, Dugo G. 2017. Potential use of proteomics in shellfish aquaculture: from assessment of environmental toxicity to evaluation of seafood quality and safety. Cur. Org. Chem. 21, 402–425. https://doi.org/10.2174/1385272820666161102121232

Ghribi F, Boussoufa D, Aouini F, Bejaoui S, Chetoui I, Rabeh I, El Cafsi M. 2018. Seasonal variation of biochemical composition of Noah's ark shells (Arca noae L. 1758) in a Tunisian coastal lagoon in relation to its reproductive cycle and environmental conditions. Aquat. Living Resour.

Guetat F, Sellem F, Akrout F, Brahim M, Atoui A. 2012. Etat environnemental de la lagune de Boughrara et ses alentours deux ans apres les travaux d'amenagement et d'elargissement du pont d'El Kantra. Bull. Inst. Natn. Scien. Tech. Mer de Salammbô, v39. ISSN: 0330-0080.

Hamida L, Medhioub M, Cochard JC, Romdhane M, Le Pennec M. 2004. A comparative study of the reproductive cycle of Ruditapes decussatus under natural (South of Tunisia) and controlled conditions (hatchery). Cah. Biol. Mar. 45, 291–303.

Hattour A, Ben Mustapha A. 2013. Le couvert vegetal matin du golf de gabes: cartographie et réseau de surveillance de l'herbier de posidonie. Bull. Instit. Nat. Sci. Techn. Mer. 164 pp.

Hazel JR. 1995. Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annu. Rev. Physiol. 57, 19–42. https://doi.org/10.1146/annurev.ph.57.030195.000315 PMid:7778864

Hochachka PM, Somero GN. Biochemical adaptation. Mechanism and process in physiological evolution, Princeton University Press, Oxford, 2002, 480 p.

Idayachandiran G, Muthukumar A, Kumaresan S, Balasubramanian T. 2014. Nutritional Value of Marine Bivalve, Donax cuneatus 86 (Linnaeus, 1758) from Cuddalore Coastal Waters, Southeast Coast of India. Inventi Impact Life Style 1, 15–19.

Irisarri J, Fernandez-Reiriz MJ, Cranford PJ, Labarta U. 2014. Effects of seasonal variation in phytoplankton on the bioenergetic responses of mussels (Mytilus galloprovincialis) held on a raft in the proximity of rea sea bream (Pagellus bogaraveo) net-pens. Aqua. 428–429, 41–53. https://doi.org/10.1016/j.aquaculture.2014.02.030

Kharlamenko IV, Wurzberg L, Peters J, Borisovets EE. 2015. Fatty acid compositions and trophic relationships of shelled molluscs from the kuril-Kamchatka Trench and the adjacent abyssal plain. Deep-sea.Res. II 111, 389–398. https://doi.org/10.1016/j.dsr2.2014.09.002

Leveillé JC, Amblard C, Bourdier G. 1997. Fatty acids as specific algal markers in a natural lacustrian phytoplankton. J. Plankton. Res. 19, 469–490. https://doi.org/10.1093/plankt/19.4.469

Li R, Watanabe MM. 2001. Fatty acid profiles and their chemotaxonomy in planktonic species of Anabaena (Cyanobacteria) with straight trichomes. Phytoch. 57, 727–731. https://doi.org/10.1016/S0031-9422(01)00082-6

McLusky SD, Elliott M. 2004. The Estuarine Ecosystem: Ecology, threats and management. University press Third Edition, Oxford. https://doi.org/10.1093/acprof:oso/9780198525080.001.0001

Natalotto A, Sureda A, Maisano M, Spanò N, Mauceri A, Deudero S. 2015. Biomarkers of environmental stress in gills of Pinna nobilis (Linnaeus 1758) from Balearic Island. Ecotoxical. Environ. Saf. 122, 9–16. https://doi.org/10.1016/j.ecoenv.2015.06.035 PMid:26164723

Ojea J, Pazos AJ, Martinez D, Novoa S, Sanchez JL, Abad M. 2004. Seasonal variation in weight and biochemical composition of the tissues of Ruditapes decussatus in relation to the gametogenic cycle. Aqua. 238, 451–468. https://doi.org/10.1016/j.aquaculture.2004.05.022

Pagano M, Capillo G, Sanfilippo M, Palato S, Trischitta F, Manganaro A, Faggio C. 2016. Evaluation of Functionality and Biological Responses of Mytilus galloprovincialis after Exposure to Quaternium-15 (Methenamine 3-Chloroallylochloride). Molecules 21, 144. https://doi.org/10.3390/molecules21020144 PMid:26821003 PMCid:PMC6273939

Parrish CC, Pethybridge H, Young JW, Nichols PD. 2015. Spatial variation in fatty acid trophic markers in albacore tuna from the southwestern Pacific Ocean-A potential 'tropicalization' signal. Deep. sea. Rea. II 113, 19–207.

Pernet F, Malet N, Pastoureaud A, Vaquer A, Quéré C, Dubroca L. 2012. Marine diatoms sustain growth of bivalves in a Mediterranean lagoon. J. Sea. Res. 68, 20–32. https://doi.org/10.1016/j.seares.2011.11.004

Prato E, Danieli A, Maffia M, Biandolino F. 2010. Lipid and Fatty Acid Compositions of Mytilus galloprovincialis Cultured in the Mar Grande of Taranto (Southern Italy): Feeding Strategies and Trophic Relationships. Zool. Stu. 49, 211–219.

Rabaoui L, Balti R, El Zrelli R, Tlig-Zouari S. 2013. Assessment of heavy metal pollution in the gulf of Gabes (Tunisia) using four mollusc species. Med. Mar. Sci. 15.

Redmond KJ, Magnesen T, Hansen PK, Strand O, Meier S. 2010. Stable isotopes and fatty acids as tracers of the assiilation of salmon fish feed in blue mussels (Mytilus edulis). Aqua. 298, 202–210. https://doi.org/10.1016/j.aquaculture.2009.10.002

Rocchetta I, Pasquevich MY, Heras H, De Molina MDCR, Luquet CM. 2014. Effetcs of sewage discharges on lipid and fatty acid composition of the Patagonian bivalve Diplodon Chilensis. Mar. Poll. Bull. 79, 211–219. https://doi.org/10.1016/j.marpolbul.2013.12.011 PMid:24373665

Sakdullah A, Tsuchiya M. 2009. The origin of particulate organic matter and the diet of tilapia from an estuarine ecosystem subjected to domestic wastewater discharge: fatty acid analysis approach. Aqua. Ecol. 43, 577–589. https://doi.org/10.1007/s10452-008-9195-6

Salvatore P di, Calcagno JA, Ortiz N, De Molina MDCR, Sabatini SE. 2013. Effect of seasonality on oxidative stress responses and metal accumulation in soft tissues of Aulacomya atra, a mussel from the south Atlantic Patagonian coast. Mar. Environ. Res. 92, 244–252. https://doi.org/10.1016/j.marenvres.2013.10.004 PMid:24157268

Turki S. 2004. Suivi des microalgues planctoniques toxiques dans les zones de production, d'élevage des mollusques bivalves et d'exploitation des oursins du nord de la tunisie. Bull. Instit. Nat. Sci. Techn. Mer. 31, 83–96.

Wang S, Jin B, Qin H, Sheng Q, Wu J. 2015. Trophic Dynamics of Filter Feeding Bivalves in the Yangtze Estuarine Intertidal Marsh: Stable Isotope and Fatty Acid Analyses. PLOS 10, e0135604. https://doi.org/10.1371/journal.pone.0135604

Wildish D, Kristmanson D. 2005. Benthic suspension feeders and flow. Cambridge University, New York. PMid:16864186

Published

2019-03-30

How to Cite

1.
Bejaoui S, Boussoufa D, Telahigue K, Chetoui I, Ghribi F, Rabeh I, El Cafsi M. Geographic variation in fatty acid composition and food source of the commercial clam (Venerupis decussata, Linnaeus, 1758), from the Tunisian Coast: Trophic links. Grasas aceites [Internet]. 2019Mar.30 [cited 2024Apr.18];70(1):e289. Available from: https://grasasyaceites.revistas.csic.es/index.php/grasasyaceites/article/view/1757

Issue

Section

Research

Most read articles by the same author(s)